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It is shown that the superfluidity of liquid He 3 must be destroyed by a sufficiently strong 
magnetic field (of the order of 4 x 104 Oe), since the formation of Cooper pairs ceases to be 
energetically advantageous. In the model of Gor'kov and Galitskil the destruction of super­
fluidity involves a first-order phase transition; in this case supercooling and superheating 
is possible and at any given temperature there exist, besides the thermodynamic critical 
field He, two other critical fields Ret> Hc2 (Ret< He< Hc2) which define the limits of 
metastability. In the Anderson-Morel model the surface tension at a superfluid-normal 
interface is negative; therefore the destruction of superfluidity in a magnetic field must 
proceed in much the same way as in a type-II superconductor. In this case Hc2 < Ret 
< He, with Hc 2 = 0, and for H > 0 ( = Hc 2 ) layers of normal phase appear. At higher 
fields liquid He 3 goes over completely into the normal phase. 

THE superfluidity of He 3 was predicted theoret­
ically [t- 4] and has recently been observed experi­
mentally by Peshkov[5J. According to the theory, 
Landau's criterion for superfluidity is fulfilled in 
liquid He 3 at sufficiently low temperatures be­
cause the excitations of the liquid form bound 
Cooper pairs. Apparently these Cooper pairs have 
even orbital angular momentum l and therefore 
zero spins. 

The theory of formation of Cooper pairs with 
nonzero orbital angular momentum has been in­
vestigated by a number of authors Ls-to]. However, 
the question of the symmetry of the superfluid 
pha~e of He 3 remains unresolved at present. 
Gor'kov and Galitskil [S] assume an isotropic ex­
citation spectrum in the superfluid phase, while 
according to Anderson and Morel [S, ?] the energy 
gap must be anisotropic. 

There is, of course, no Meissner effect in 
superfluid He 3. Nevertheless, in a strong mag­
netic field H ~ 6./f.l (where 6.. is the gap in the 
elementary excitation spectrum and f.l, the mag­
netic moment of the He 3 atom, is 2.127 nuclear 
magnetons) the formation of Cooper pairs in a 
singlet state becomes energetically unfavorable, so 
that superfluidity must be destroyed. 

In the Gor'kov-Galitski'i' model destruction of 
superfluidity must involve a first-order phase 
transition. In this case superheating and super­
cooling is possible and at any given temperature 
there exist, besides the thermodynamic critical 
field He, two other critical fields Ret and Hc 2 

(Ret < He < Hc 2 ) which define the limits of 
metastability; in the region Ret < H < Hcz the 
normal phase is metastable and, conversely, in 

the region He < H < Hc2 the superfluid phase is 
metastable. In a field less than Ret the normal 
phase is completely unstable against the forma­
tion of Cooper pairs; in a field greater than Hc 2 

the Cooper pairs must break up, i.e., the super­
fluid phase is unstable. 

In the Anderson-Morel model the surface ten­
sion at a superfluid-normal phase boundary is 
negative and He > Ret > Hc2 with Hc 2 = 0. In this 
case the destruction of superfluidity must proceed 
in much the same way as in a type-II supercon­
ductor [tt]: in a field H > 0 ( = Hc2 ) layers of 
normal phase are formed, and as the field is in­
creased further liquid He 3 goes over completely 
into the normal phase. 

Below we shall first use the method of Gor'kov 
and Galitskil to calculate He and Hc2 (Sec. 1). 
The critical field Ret is calculated in Sec. 2 with­
out using the results of [s-to]. We believe our 
method to be free of some possible drawbacks of 
the methods of these references. The question of 
the destruction of superfluidity in the Anderson­
Morel model is discussed in Sec. 3. 

1. THERMODYNAMIC RELATIONS FOR THE 
GOR'KOV-GALITSKil MODEL. DETERMINA­
TION OF THE SUPERHEATING CRITICAL 
FIELD Hc2 

To determine the thermodynamic critical field 
we use the fact that at the transition point the free 
energies of the superfluid and normal phases are 
equal (we neglect the compressibility of He 3 ); 

they are given by: 
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F.=F.o- ~ M.(H)dH, Fnh=Fno- ~ Mn(H)dH, (1) 
0 

where Ms and Mn are the magnetization in the 
superfluid and normal state respectively. There­
fore the critical magnetic field He satisfies the 
equation: 

.\ [.Mn(H) -M.(H)]dH=Fno-Fso· (2) 
0 

In the two most interesting cases a) ~-tH « T 
and b) ~-tH » T, the magnetizations Ms and Mn 
are proportional to the magnetic field 0: Ms 
= XsH, Mn = xnH .. Under these conditions the criti­
cal field is given by: 

(3) 

The susceptibility of the normal phase is Xn 
= ~-t2mp0/rr2 where m is the effective mass of an 
excitation in He 3 and Po is the Fermi momentum. 
The susceptibility of the superfluid phase Xs was 
calculated in [12 ·13]. For pairing in a singlet state 

(4) 

where Ns ( T )/N is the concentration of the super­
fluid component. The quantities Fno- Fso and 
Ns ( T )/N are given by the same formulae as in 

d t . 't th [14l supercon uc IVl y eory -. 
At zero temperature we have: 

Hc(O) = ~(0) I 1-11'2 = 440000e. (5) 

where we have used the fact that 6 ( 0) = 1. 75 T0 
and substituted the value T0 = 0.0055oK found by 
Peshkov [5]. 

Near Tc the critical magnetic field changes 
with temperature according to the formula 

Hc(T) = ~ = _!-.53Tc ( 1- _!__ )'/'. 
J.1 J.1 Tc 

The heat of the transition has the form 

(6) 

Q = -T[Mn(Hc)- M.(Hc)]dHcl dT. (7) 

At low temperatures 

Q = Cno(T)T, (8) 

where Cno ( T) = mp0 T /3 is the specific heat of the 
normal phase; while for T- Tc 

The specific heat of the superfluid phase is in­
creased in the presence of the magnetic field. At 
low temperatures the change of specific heat with 

1 )This can be shown by a microscopic calculation of 
magnetic moment. 

field can be pronounced: 

Csh = C.o{ 1 + :(J.1H/T)2 }. (10) 

The critical fields H01 and H02 cannot be de­
termined from thermodynamic considerations 
alone and to calculate them we must return to the 
microscopic theory. In this section we calculate 
the superheating critical field H02 . 

In a field H > H02 the superfluid phase is com­
pletely unstable against the break-up of Cooper 
pairs, since the energy gain due to the ordering of 
spins in the magnetic field, 2~-tH, exceeds the 
binding energy of pairs at the temperature in 
question, 26 ( T ), so that there appear quasi­
particles with negative energy 6(T)- ~-tH 2 l. 
Therefore the superheating critical field bears a 
simple relation to the energy gap 6( T ), namely 

Hc2(T) = ~(T) I J.1. (11) 

2. SINGULARITIES OF THE VERTEX PART FOR 
ZERO TOTAL MOMENTUM OF THE COLLID­
ING PARTICLES. CALCULATION OF THE 
CRITICAL FIELD Hc1 

In a field less than H01 the normal phase is 
completely unstable against the formation of 
pairs. It can be shown [15] that this instability is 
signalled by the fact that in the thermodynamic 
diagram technique the vertex part 
ffa{3 ;yo ( p, q - p; p', q - p'), when considered as 
a function of the fourth component of total 4-
momentum q4 and analytically continued from a 
discrete set of points on the imaginary axis into 
the upper half of the complex q4 plane, has a pure 
imaginary pole. As we reduce the field, this in­
stability sets in at the value of the field H = H01 . 
Obviously the pole in the vertex part appears 
first for q = 0, i.e., for zero total 4-momentum. 
Thus, at the point H = H01 the thermodynamic 
vertex part ffa[J;')'o(P- p; p', -p') = ffa{3;yo(P, P') 
tends to infinity. This property can be used to 
find the value of H01 . 

The relevant function ffa(3 ;yo ( p, p' ) can be 
calculated by summing the series of "ladder" 
graphs [15]. This summation leads, in the usual 
way, to the equation 

-px·· p·::; -p'><:,. +-/)~· 
pp'PP~ 

(12) 

2)The energy of an elementary excitation with momentum 
p and spin projection a in the magnetic field is equal to 

E P + 2~a, where Ep = J 6. 2 + ( ~ is the energy of the 

quasi-particle il} absence of the field. This result may be ob­
tained by Green's-function methods. 
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where the unshaded block denotes the bare vertex 
gr(O) 

0!{3 ;yo 

f1 ~~; yO (p, p') = V' (p, p') ( baybpo - baM'Ip...,) 

+ V" (p, p') ( ba...,bpo + baobp...,). 

(13) 

Here V' ( p, p' ) and V" ( p, p' ) are respectively 
the even and odd parts of the interaction potential 
V ( p, p' ), which in our model is nonzero only in a 
shell of width 2w around the Fermi surface, and 
within this shell depends only on the angle between 
the vectors p and p'; accordingly we may expand 
it in Legendre polynomials: 

The explicit form of the equation for the vertex 
part ff0!{3;yo is: 

IH ( ') GT'(O) ( ') 
e1 "ll;vO p,p =iff all;vO P,P 

(15) 

where 

@I~J (p, ron) = ron_ ~~ + flH 6 .. ~, ro~ = i (2n + 1) nT. (16) 

It should be noted that in the approximation we 
are using the vertex part !l"a(3;yo ( p, p') does not 
depend on the fourth components of the momenta 
p and p'; this is obviousfrom (15) and (13). 

Expanding the function !rh{3;yo ( p, p' ) in 
Legendre polynomials 

!l"afl;vo(p,p')=~ (2l+1)9'~~;voP1 (pp') (17) 
l 

ap.d substituting (13), (14), and (17) in (15), we ob­
tain the following relation for the coefficients 
. (l) 
ff a{3;yo= 

cl) Tpz ~~ 
!/"all; vo = Vz ( bavbpo + baobp...,) + - LJ J d~lt 

2 
roll. 

X{@!~~ (k) @!~~( -k) + @!~~ (k) @!~~ ( -k) }!I"~~; vo. 

We have introduced the notation 

(18) 

(19) 

In Eq. (18) the minus sign must be taken for even 
l and the plus sign for odd l. 

F l th t 't' ar(l) h th or even e quan 1 1es iff 0!{3 ;yo ave e 
form 

GJ(l) GJ(l) (" " " " ) "' all; y5 = iff u,.yUf35 - u,.au{3y , (20) 

where 

s-U> = Vz { 1 + Tgz ~ ~ d~k@!~~ (k) @l~o~. _, (- k) rl . (21) 
"'It 

After some simple but tedious calculations which 
we shall not reproduce here, we get the following 
final expression ~r trell for even l: 

gr<l) = Vz { 1 - ~ ~ d~ ( th ~ ~;H + th ~ -;;H)} -l • 

0 (22) * 
Thus the critical field Ret can be determined 

from the equation 

1=~1 d~[th ~+JJ.Hct+th ~-JJ.Hct] (23) 
2 0 ~ 2T 2T . 

For T = 0 we must make the substitution in the 
integrand 

~± flHct . 
th 2T -+Sign(~± flHK1), 

after which the integral is easily calculated. As a 
result the relation (23) takes the simple form 

(I) 

1 = pzln-­
flHct 

and the critical field Ret at T = 0 is given by 

(24) 

Hct (0) = A {0) I 2JJ. = 310000e. (2 5) 

where ~ ( 0) is the energy gap calculated by the 
method of Gor'kov and Galitskii [s]: ~ ( 0) 
= 2wexp ( -1/pl). 

Comparing formulae (5), (11) and (25), we see 
that in the Gor'kov-Galitskii model Ret ( 0) 
= He ( 0 )/ .f2 and Hc2 ( 0 ) = .f2 He ( 0 ) , i.e., 

Ret ( 0) < He ( 0) < Hc2 ( 0 ). These inequalities 
actually hold for all temperature regions. Thus 
in the Gor'kov-Galitskil model Ret is the super­
cooling critical field. 

To determine the function Ret ( T) near the 
critical temperature Tc, we must expand the 
right-hand side of Eq. (22) in powers of J..!Hct 
and T c - T. After some simple algebra, which 
we omit, we obtain the relation 

(26) 

Using the relation found in superconductivity 
theory [t 4] for the temperature dependence of the 
energy gap ~ ( T ), we can prove that for T- Tc 

Hct (T)-+ A(T) lfi~J--+J:= I!c(T). (27) y2 
In the intermediate temperature region Ret ( T) 
cannot be expressed so simply in terms of ~ ( T). 

*th =tanh. 
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It should be noted that in calculating Hc1 we 
have not made use of the method of Gor'kov and 
Galitskil [B]. Moreover, the above results do not 
depend on the use of the widely used but very ar­
tificial model involving the "reduced" BCS 
Hamiltonian, for which the Anderson-Morel solu­
tions are asymptotically exact [S] 

3. DEST·RUCTION OF SUPERFLUIDITY IN THE 
ANDERSON-MOREL MODEL 

In the Anderson-Morel model the energy gap is 
anisotropic and satisfies the equation 

~ n 1 ~ ~(Pi) e (p') 
~(p) = --- J dp'V(p, p') -,.-th--. (28) 

(2n) 4 e(p') 2T 

In the general case the solution of this equation 
has the form 

~(p) = .~ ~lmYzm(P), 
l,m 

(29) 

where the coefficients ~Zm are connected by the 
relations -

Ill 

~lm = Pl ~ ~l'm' ~ d~ ~ dp 
l'.m' 

Ar..derson anP. Morel have shown [7] that of the 
solutions of the form 

~(p) = ~~mYzm(P), 
m 

(32) 

the one with the lowest value of F so at T = 0 is: 

~ [ . 1 ] ~(P)=f~(O) 2-'I•Yzo+-2-(Y?z-Yz,-z) ; (33) 

lnr = 1.154 

(where ~ ( 0) is the gap calculated by the Gor'kov­
Galitski1 method). In (29) the coefficients ~lm 
with l "' 2 are small compared to ~2m in view of 
the fact that the coupling constant p 2 « 1 [IS]. 

This fact allows us to calculate the value of the 
thermodynamic critical field for the Anderson­
Morel model from (3): 

HcAM(O) = 0.89Hc(O) = 390000e, (34) 

where He ( 0) is the critical field for the Gor'kov­
Galitskil model [cf. formula (5)]. Thus, H~M( 0) 
> Hc1 ( 0) [cf. formula (25)]. On the other hand, 
the critical field Hc2 in the Anderson-Morel model 
is given by 

HczAM(T) = I~{T) I min f !J., 

where I ~ lmin is the minimum value of the 
energy gap on the Fermi surface. For the solu­
tion (33) the minimum value I~ 1m in= 0. 

(35) 

This value is attained at the points of intersec­
tion of the lines cos e = ± 1//3, , sin 2cp = 0, on 
which the real and imaginary parts respectively 
of ~ ( p) vanish. Obviously, taking harmonics 
with l "' 2 into account will only lead to an unim­
portant shift in these lines, while the minimum 
value of I~ I remains zero. This result remains 
valid at finite temperature. Thus, 

(36) 

Accordingly we have for the Anderson-Morel 
model the inequalities H~2M < Hc1 < H~M. In this 
case the pattern of destruction of superfluidity is 
quite different from that considered in the previ­
ous sections. In fact, in the interval 0 < H < Hc1 

the pure normal and pure superfluid states are 
both unstable and for any finite field H > 0 
( = H~2M) layers of normal phase appear, i.e , He 3 

goes over into a mixed state. Accordingly, the 
surface tension at a superfluid-normal boundary 
must be negative. A similar situation occurs in 
superconducting alloys (type- II superconductors)[uJ. 
The final destruction of superfluidity obviously 
involves a first-order phase transition. The cal­
culation of the corresponding critical field H~fl 
is extremely complicated, since it requires a 
knowledge of the thermodynamic functions of the 
mixed state. We can only state that H(}J"i ~ H~M 
since for H < H~M the inequality Fnh > F sh is 
satisfied. On the other band, obviously H~3M has 

order of magnitude ~/p.. In the interval Hc1 < H 
< Hc 3 the normal phase can exist in a metastable 
(supercooled) state. 

Thus we may expect that the destruction of 
superfluidity of He 3 at T = 0 will require a field 
of order 4 x 104 Oe. Observation of this phenome­
non should constitute convincing confirmation of 
current ideas about the nature of superfluid Fermi 
systems. 
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