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The angular distributions of the secondary particles from production of electron-positron 
pairs by a fast charged particle in the field of a nucleus are calculated. Distributions are 
given both for the particles of the pair and for the original particle after the collision. 

1. INTRODUCTION 

THE production of electron-positron pairs in 
collisions of fast particles was studied theoretically 
long ago (first by BhabhaC 1•2J before the develop­
ment of the Feynman technique). In Bhabha's 
papers the incident particle was regarded as a 
classical charge, and naturally his result for the 
total cross section should be correct for cases in 
which the pair that is produced receives a rela­
tively small energy. It was found subsequently 
from experiments with cosmic rays [3] that the 
cross section calculated by Bhabha did not give 
agreement with experiment when the incident par­
ticle was a high-energy electron. 

Recently the cross section for pair production 
by a high-energy charged particle has been calcu­
ated again, with the Feynman technique, by Japanese 
theorists (Murota et al. [ 3]), and also by Ternov­
skil. [4] It turns out that all authors get the same 
result for the cross section in the region where the 
energy of the pair w = ( E+ +c) « E/J.l. (the pair is 
less "relativistic" than the parent particle); 
here J.l. is the mass of the incident particle and E 
is its energy. For w » E/J.l., Murota et al. get a 
result different from Bhabha's, and Ternovskil 
obtained still higher accuracy. In none of these 
papers, however, was any special effort made to 
get the angular distribution of the secondary parti­
cles (this affects the nature of the calculations). 
Using the results of the papers cited[HJ, we have 
obtained the angular distributions of the secondary 
particles from the process of pair production by a 
fast charged particle (of mass J.l. « E). 

In the relativistic region (E » J.l., E:± » 1) the 
differential cross section for this process, in low­
est order of perturbation theory, can be written as 
follows: 

da = _§_'2. IKI2 .S(E- E'- e+- e-) dp+dp_dp'; 
I PI e+e- (2n) 9 

16n2i 
K =- Ze4 q2k2 ii'(p')y11 u(p) 

_ [ t(v,p--k)-1 
X u (P-) y11 ( ey) 

D-

where p is the initial and p' the final momentum of 
the incident particle, and 

q = P- p'- P+- P-, k = P- p', D± • (k- P±)2 + 1. 

(A system of units is used in which n = c = me = 1.) 
Here only two Feynman diagrams have been taken 
into account (Fig. 1). For the justification for this, 
see, e.g., [ 3]. 

It is necessary next to carry out averaging and 
summing over polarizations of the particles. This 
is done in the standard way, and therefore we shall 
not deal with it. 

Since, as can be seen from the expression for 
the cross section, in the collision of relativistic 
particles only small angles are important, we shall 
set sin e ~ e and cos e ~ 1- % e2• It will be more 
convenient for us to study the angular distribution 
in the form of the distribution of transverse com­
ponents of the momenta of the particles after the 
collision. If the momentum of a particle after the 
collision is p', then because of the assumed small-

FIG. 1 
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ness of the angles the transverse component is 
P1 ""P'I1, P1 = (p;_, Py' 0). For small energy trans­

fers p 1 "" (px, Py' O), where p is the momentum of 
the primary particle before the collision. We also 
introduce analogous notations for the electron­
positron pair. 

2. THE DISTRIBUTION OF THE PRIMARY PARTI­
CLES 

We first investigate the distribution of the trans­
verse components of the momentum of the primary 
particle (for example, a muon of mass JJ-) after 
collision with the external field of a nucleus Z. 
To do so we integrate the given differential cross 
section over the angles of the electron and posi­
tron. A similar integration is done in[4J. There­
sult is 

Z2e~ L dp+dP-P1_dpj_ 
da=--- -

3(2n)5 M4 w2(p1_2E2 + ~t2w2)2 

X { !12w2(pj_2 ~=:) + 2E"pJ. 2[pj_2 + wz + 2M2(P+z + P-2)] 

4p+zp_2(pj_2E2 + 112w2)2} 
+ (pj_2+w2)2 ' 

where 

(E ~ p), 

P+P-
L = lnM(wz +Pj_z)'h. 

Let us perform the integration over the elec­
tron and positron momenta p+ and p_. To do so we 
deal separately with the regions where the energy 
transferred to the pair has values w « E/J.L 
(region 1) and where w » E/J.L (region 2). It can 
be seen at once that in region 1, owing to the factor 
( p2 E2 + J.L 2 w 2) 2 in the denominator, the important 
values of p 1 are those up to p 1 ~ 1. In region 1 we 
have E:±JJ-/E « 1, and consequently M2 can be taken 
in the form 

M2::::::; 1 + P+P-W-2pl_2. 

Since the largest contribution to the integral comes 
from the region where E:+ ~ c ~ w /2, in the factor 
L/M4 we neglect the dependence on p+ or p_, and 
set P+P- "" %w 2. Performing the integration over 
the momentum of one of the particles of the pair, 
we get 

Z2e8 L p1_dp1_ dw 
da=-. --

3(2n)5 M" (pj_2E2 + ~t2w2)2 w2 

{ !12w2(pj_2 + w2) + 2E"pj_z ( 7 2 + 1 2 z + 2) 
X 2w 3 w 5 p j_ co p j_ 

(!lzwz + p1_2B2)2 2 ) + -w5 . 
(pj_2+w2)2 15 

The probabilities of large momentum transfers 
are of particular interest. For p 1 ,2::, 1 we have 
Pi E2 » JJ- 2w 2. Therefore, setting L"" ln w (correct 
up to a factor in the argument of the logarithm), 
we find 

E/V. 

X ~ lnwdw =~ 7+pj_2 ln2!!_dh 
1 w 36n5 (4+pj_2)2 !1 pj_. 

Then for large p 1 

Z2e8 E dp I 
da = --ln2 -- ---=- . 

36n" 11 p 1_ 3 

A simple expression can also be obtained for 
extremely small transverse momenta p 1 < J.L/E. 
Here Pi E2 < JJ- 2w 2, and on integrating we get 

(a term ~ p~ has been dropped), for p 1 < J.LIE < 1. 

Let us consider the region 2, where w » E/J.L, 
but still w « E. In this region the diagrams that 
have been discarded can have an important influ­
ence. Still, as is shown in [ 4], for the muon, as a 
nuclearly nonactive particle for w « E, the dia­
grams we are using are nevertheless the decisive 
ones. In this region, unlike region 1, values of the 
transverse momenta clear up to p 1 ~ J.L are impor­
tant. 

In region 2 the quantity M2 will have a some­
what different form: 

The integration over dp 1 is done in an analogous 
way. We get 

da = ~ LE4p1_dpj_w2 dw { 11zw2(pj_2 + w2) + 2E"pj_2 
3(2n)5 (!12w2 + pj_2E2)4 2EZw" 

[. 16E2 16 J 
X ---;;;- (p j_ 2 + w2) + T w (p j_ ZE2 + wz11z) 

4w (pj_2E2+f..t.Zw2)2} + . (p1_ 2 + w2)2 

It is easy to do the integration for small momenta 

P1 < 1: 
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For JJ. < P1 < E/JJ. we have 

28 Z2e8 E dp 1_ 
da = ----ln--ln ft--. 

9 (2:rt)5 2pj_ft pj_3 

3. THE DISTRIBUTION OF THE PARTICLES OF 
THE PAIR 

In this section we shall obtain the distribution 
of the particles of the electron-positron pair. For 
this it is most convenient to use the method by 
which the calculations were done in Bhabha's 
papers. In doing so we must remember that this 
method is known to apply in the region 1 which is 
of most interest, and in which Bhabha's results 
agree with those of all the other papers. The cross 
section is here written in the form 

where V is the relative velocity of the particles; 
p'~', E '~' are the momentum and energy of the elec­
tron (positron); p r are the transverse components 

of the momenta of these particles, and 

6 = 1 +(pj_-)2 + 1 +(pj_+)2 
2e_ 2e+ 

D_ = (Pl-' + P1--)2 

+ ( e+ + e- _ _ _ + ) ( e+ + e_ _ _ + + ) 
V Pz P V Pz P . 

We depart from the procedure in[l] and intro­
duce new variables: 

It is easy to see that the most important contribu­
tion to the integral over !;; 1 is from the region near 
the origin, where 0 < !;; 1 < 1. Therefore we expand 
the integrand in a series in !;;]_, and drop the higher­
order terms (for more details see [ 1]). The same 
applies to the integral over p~. 

The integration over the angular parts of the 
variables !;; 1 and pj_ can be done simply. We get as 
the result 

Here p 1 is the transverse component of the momen­
tum of the electron. 

After integrating over the variables indicated 
we find 

Z2eB ~~» { 4e+e-p j_ 2 } 
da = 4n 2 ln 62ln e2 dpx dpy ~ de+ (e+2 + e-2) + (1 + p1_ 2)2 

de_ 
X --,-..,.-,----:-

w4(;1 + p1_2)2 

We then carry out the integration over E+, setting 
E+ ""E_ "" 1/ 2w in the argument of the logarithm, as we 
did before. We get 

Assuming ln(E/JJ.) » 1, we get the final result: 

FIG. 2 
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Accordingly, in the distribution of the trans­
verse components of the electron (positron) momen­
tum the important values of p 1 are those running 
up to p1 ~ 1 (or in ordinary units Pl ~me, where 
m is the mass of the electron). 

The shape of the resulting distribution is shown 
graphically in Fig. 2. 

In conclusion I express my gratitude to L L. 
Rozental', and also to G. T. Zatsepin and the mem­
bers of the seminar he conducts for a discussion. 
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