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We consider the spectrum of electromagnetic oscillations of a ferromagnetic metal in the 
presence of a stationary external electric field. We show that a new oscillation branch, whose 
frequency depends appreciably on the electric field at small values of the wave vector, ap­
pears along with the ordinary spin oscillations. Instability of the new oscillations arises if 
the electric field strength exceeds a certain critical value. This is manifest in a change from 
damping to build-up of oscillations with a wave vector almost parallel to the magnetization. 

A new branch of the electromagnetic spec-
trum, different from the spectrum of the equili­
brium crystal, is produced in a ferromagnetic 
metal in the presence of an electric field. The 
real part of the frequency in this branch differs 
from the ordinary spin-wave frequency only when 
ck « v 4rraw 0, where a is the electric conductivity, 
k the wave vector, c the speed of light, w 0 = 4rrgM0, 

g the gyromagnetic ratio, and M0 the magnetiza­
tion. When the electric field exceeds a certain 
critical value, these oscillations with wave vector 
k almost parallel to M0 become unstable and start 
to grow. 

The system of equations leading to these phe­
nomena consists of the equation of the current in 
a weak magnetic field (71 = (aBBo + aM:M0)/a « 1): 

J = crE + crB'[EB) + crM'[EM), (1)* 

the equations of motion of the magnetic moment 

dM t. dt = g [MH<e>] - M2 (M (MH<e>]], 

Maxwell's equations t 

4n 
rotH= -J, 

c 

1 fJB 
rotE=---­

c f}t ' 

divB = 0, divE= 4nen 

and the continuity equations 

an 
dt+ divJ = 0. 

(2) 

(3) 

(4) 

Here H(e) is the effective magnetic field, [1] B the 
magnetic induction, E the electric field, n the elec­
tron concentration, and a B and aM: the normal and 

*[EB] =EX B 
trot =curl 

anomalous Hall conductivities, respectively. The 
subscript zero denotes the constant parts of the 
corresponding quantities. 

Linearizing (1)-(4), using the smallness of the 
parameter w I a, and assuming that the vectors M0, 

B0, and k are parallel, we obtain dispersion equa­
tions for the waves with right-hand and left-hand 
polarizations: 

£(w- VBk) [w + (Qh + <uo) (1 + i4nt. I wo)] 

+ i[w + Qn(1 + i4nt. I wo)] (wo- srJw) = o. (5) 

Here 

VB = aB' cEo I a, 

(6) 

I is a quantity of the order of the Curie tempera­
ture, a the lattice constant, H0 the magnetic field, 
including the external magnetic field, the aniso­
tropy field, and the demagnetizing field. These 
equations lead to two branches of the spectrum, 
which, under the conditions 

(vBk) I wo, (vMk) I wo, I. I wo, Qh I Wo < 1 

take the form 

Wi = ±wo( 1 + TJ Is) - i ( 4nA. + Wo Is)' (7) 

(s(vk)- iQn](1 + i4nt./wo) 
(J)2 = s(i + i4nf.lwo) (1 + iTJ)+ i ; (8) 

V =VB+ VM• 

When~ « 1, that is, when k is large, practically 
no oscillations are excited in the first branch, 
which is strongly attenuated. When ~ » 1, the 
attenuation is weak. [ 1J 
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The oscillations of the second branch are weakly 
attenuated and are therefore excited at both large 
and small values of the parameter ~ . 

The expression for w 2 simplifies in the limiting 
cases ~ « 1 and ~ » 1. 

In the former case 

w2 = +Qk- iHQk + (vk)] - i4nA.Qk I Wo. (9) 

Here, as in (11), we have discarded terms contain­
ing products of small parameters, for example, 
A TJ/W 0• 

If 

lvkl > Q,(1 + 4nA- I swo), (10) 

then the damping gives way to growth, but this con­
dition can be realized only in electric fields that 
are difficult to attain. 

In the latter case 
i 

w2 = (vk)- - 6 [Q, + (vk)] ± il] (vk). (11) 

Oscillations of this type attenuate weakly when 
v » Qk/~k I cos J.[, and start to grow if 

kQk 
u>ur= , (12) 

c ( k 2 + 4MwolJI c2) I cos 'fr I 
where J. is the angle between k and E0• 

The velocity v cr is minimal when J. = 0 and 
vanishes when k = 0. 

If gH0 < 367rCTW 0Ia 2TJ /fi c 2, then v cr increases 
monotonically with k, and for the inverse inequality 
the velocity is a nonmonotonic function of k and has 
in the case when gH0 » 361TCTW 0Ia 2 TJ /fi c 2 a minimum 
at 

time the anomalous Hall conductivity is relatively 
large. Thus, for example, for sandust (83-85% Fe, 
12-9% Si, and 3-8% Al), the anisotropy field is 
close to zero. The anisotropy constant is close to 
zero [ 4J, while the anomalous Hall constant Rm 
= CTM/CT 2 ~ 6 x 10-9 V-ern/A-G. Putting 
CT ~ 104 Q-1 cm-1 and gH0 ~ 106 sec, we obtain 
Ecr ~ 1 V /em. Near the point where the aniso­
tropy constant reverses sign, gH0 can be assumed 
to be even smaller. A relatively large anomalous 
Hall constant and a near-zero anisotropy is 
possessed also by the alloy of the permalloy class 
~ 80% Ni, 17% Fe, 3% Mo[ 5,6J. 

We have considered waves with wave vector k 
parallel to the magnetization M 0• In the case when 
k II E0 1 M 0, B 0 the dispersion equation takes the 
form 

[is(w- uBk) - wo] {iH (w- uBk) (w2 - Q12) + uMkQ1wo] 

- w0 (w2 - QQI) + i(4n/,w / wo)[2i£QI(w- uBk) 

(15) 

Here S1 1 = Qk + w 0• 

When ~ « 1, this equation leads to the well­
known spin-wave spectrumC1J, which is hardly 
affected by the electric field, and to two strongly 
attenuated branches of oscillations. 

When ~ » 1 we obtain high-frequency oscilla­
tions ±Q 1[ 1] and two low-frequency oscillations: 
strongly attenuating 

W1 = u Bk - iwo I s 
and weakly attenuating 

Wz = uk - iQk I £. 

(16) 

(I 7) 

In this case 
(13) In the last expression we have discarded terms of 

the order of ~ vk/w 0• 

We take the opportunity to thank E. I. Kondor­
(14) ski! for important information on the properties of 

ferromagnetic metals. 
To decrease the field Ecr at which instability 

sets in, it is necessary to choose a material in 
which the parameter H0 = Ha + Hd + H is. minimal 
( Ha, Hd and H are respectively the anisotropic 
field, the demagnetizing field, and the external 
field). 

The parameter H0 can be decreased by various 
means. First, the anisotropy field fluctuates in 
different materials over a wide range and may even 
reverse sign at some temperature and composi­
tion of the material [ 2]. Second, the parameter H0 

can be reduced by choosing the sign of the magnetic 
field opposite to the sign of the anisotropy field [ 3]. 

From the expression (14) for the critical field it 
follows that the material must have a maximum 
ratio CT 1 /CT. There are several alloys in which the 
anisotropy field is close to zero and at the same 
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