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A mechanism for removing ultraviolet divergences in a local nonlinear quantum field theory 
is investigated within a model of scalar mesons interacting with a fixed point source. It is 
proved that the perturbation theory series, considered as expansions Of the stationary states 
of the total Hamiltonian in terms of the stationary states of the free Hamiltonian, are always 
divergent in the case of nonlinear interactions. The functional methods which permit one to 
construct a finite S-matrix from a nonlinear Lagrangian, are in their essence methods for 
summing divergent series. The problem of uniqueness remains open for the time being, even 
if unitarity and causality are satisfied. 

1. INTRODUCTION 

IT has been attempted recently [ 1- 4] to construct a 
finite local quantum field theory for a scalar field 
by introducing an essentially nonlinear interaction 
Lagrangian, satisfying certain requirements. It 
turned out to be possible to construct the S-matrix 
in terms of powers of the interaction Lagrangian, 
so that no ultraviolet divergences appear in any 
order. Unitarity has been verified only in second 
order of perturbation theoryC4] and in third order 
for the Green's function [ 3]. 

In previous work[ 1- 3] formal mathematical oper­
ations were employed to obtain the radiative opera­
tors of the S-matrix, so that the mechanism which 
led to the elimination of the ultraviolet divergences 
was not completely clarified, in our opinion. In the 
present paper it is attempted to understand what 
happens when an essentially nonlinear interaction 
Lagrangian is introduced, on the basis of a model 
of scalar mesons interacting with a fixed point 
source. 

The model is described by the Hamiltonian 

H = Ho + H1. (1.1) 

Ho= ~ ~ dx:[n2(x)+(V<p(x))2+J.L21Jl2(x)]:, (1.2) 

H1=g~ dx6(x):U(<p(x)):=g:U(<p(O)):, (1.3) 

where cp(x) and 7r(X) are the boson field operators, 
U(cp) is some function of cp. If U(cp) = cpn, with 
n ~ 2, the Hamiltonian (1.1) describes a nontrivial 
theory, which includes scattering and other physical 
processes. We shall be mainly interested in the 
presence of ultraviolet divergences for a point in-

teraction with n ~ 2. We note that models with 
n 2:: 3 are nonrenormalizable theories. 

The present model is attractive because it al­
lows us to establish a complete correspondence 
between a quantum field theoretical problem and 
an ordinary SchrBdinger equation with a potential, 
for which the complete analysis is known. 

Our problem consists in the following: is it 
possible to find such functions U(cp) for which there 
are no ultraviolet divergences in each order of 
perturbation theory? Intuitively it might seem that 
the difficulties of the theory arise in the region 
where the fields cp are large. It would seem that if 
one could choose the interaction in a form which 
would make it small for large cp, such theories 
should contain no difficulties connected with large 
energies. And the existence of a finite perturbation 
theory would speak in favor of the existence of an 
expansion of the stationary states of the total 
Hamiltonian H in terms of the stationary states of 
Ho. 

However, it turns out that it is not so. The ef­
fect of the infinite number of degrees of freedom 
of the quantized field turns out to be more impor­
tant. In this respect our result is in agreement 
with the result of van HoveC 5J, who has proved that 
for a model with U(cp) = cp the state vector spaces 
of the total Hamiltonian and the free Hamiltonian 
are mutually orthogonal subspaces of one Hilbert 
space. 

On the other hand, the previously developed 
methods [ 1- 3] allow one to construct, within the 
proposed model, for a certain class of interaction 
functions U(cp), a perturbation series for the com­
plete S-matrix which is free of divergences. At the 
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same time it is impossible to construct for this 
class of Lagrangians a quantum-field-theoretical 
Schrodinger equation with a potential, since, firstly, 
the interaction cannot be a potential, and secondly, 
the perturbation theory series are strongly diver­
gent. This means that the mentioned methods [t, 2] 

are essentially methods of summation for diver­
gent series. Therefore it is of prime importance 
to check such properties of the S-matrix as uni­
tarity and causality. This agrees with the result of 
the axiomatic approach to quantum field theory, 
when the existence of a unitary S-matrix mapping 
the asymptotic fields <pin onto <pout is possible, 
whereas the existence of the "halved" unitary 
matrix S(t, -oo) (evolution matrix) for finite t, is 
forbidden by Haag's theorem.C6J 

It follows from all that was said that the con­
struction of a finite S-matrix by perturbation theory 
in terms of a nonlinear interaction Lagrangian has 
little in common with the ideology of perturbation 
theory in the classical Lagrangian formulation of 
the theory, when it is assumed that a small per­
turbation produces a small change in the states of 
the free field. There exists only a method for con­
structing a finite S-matrix, as a unitary operator 
mapping the Hilbert space of the in-states into the 
Hilbert space of the out-states, in terms of powers 
of the coupling constant, and unitarity and causality 
play an essential role in the verification of the 
method. 

2. THE QUANTUM-FIELD SCHRODINGER EQUA­
TION 

Let us now formulate the problem. We assume 
that the system is enclosed in a cubic box of vol­
ume V. The momentum vector k of the bosons has 
components which are integral multiples of 2rr V -1/ 3• 

We introduce the creation and annihilation opera­
tors ak and ak for free bosons, by means of the 
Fourier expansion 

( ) 1 ~ 1 ( ikx + + -ikx) (2 1) 
qJ X = v- Li v- ake ak e , · 

V k 2wk 

where 

Then we obtain for H0 and HI 

Ho = ~ wkak+ak, 
k 

HJ=g:u(v1- ~V1 (ak+ak+>) :. (2.2) 
V k 2wk 

The interaction Hamiltonian has been taken in 
the normal product form. We shall discuss below 
what implications are involved by this for functions 

U(<p) of a complicated form. 
The equation ak = (~ + ipk)/(2) 112 defines the 

Hermitean operators~ and Pk which are subject 
to the corp.mutation relations 

In the representation in which the ~ are diagonal, 
one can put 

(2.3) 

and the state vector of the field will be a function 
w = w(qk) with various (infinitely many) numerical 
~· In terms of Pk and <)k Eqs. (2.2) become 

Ho = ~ ~ wk(pkz + qk2- 1), 
k 

H1=g:u(~v ~ ;;)=· 
(2.4) 

(2.5) 

The quantum-field Schrodinger equation for the 
stationary states of the interacting system can be 
written in the form 

(2.6) 

This equation is a complete analogue of the ordin­
ary Schrodinger equation, but has an infinite num­
ber of degrees of freedom. Our problem is to solve 
Eq. (2.6) by means of perturbation theory (expand­
ing in the constant g) and trying to determine the 
class of functions U(<p) for which a finite limit 
exists as V- oo. 

The free Hamiltonian represents an ensemble 
of uncoupled harmonic oscillators. The eigenfunc­
tions of H0 are infinite products 

(2.7) 

where 

hn(q) = Hn(q)e-q'f2/(2nnl fo,)'l•, (2.8) 

hn are the orthonormal Hermite functions. The 
eigenfunctions w({nk }) depend on the set of integers 
{nk}; to each momentum there is associated the 
positive integer nk representing the number of 
bosons with momentum k. The energy eigenvalue 
corresponding to w({nk}) is E = l:knkWk· For the 
ground state (the boson vacuum) nk = 0. 

We now consider the interaction Hamiltonian 
(2. 5). In our representation it is a function of the 
numerical variables ~· and thus can be consid­
ered as an ordinary potential. We would like to 
consider Hr as a small perturbation. It is reason-
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able to require a priori that since H0 represents 
an ensemble of oscillators, the perturbation should 
not increase for ~- oo faster than qk. We shall 
also assume that 

lim: U(!Jl): = 0. 

It is also necessary to consider the normal 
product form of the interaction Hamiltonian. 
Usually, when one deals with an HI(<P) which is 
only a finite sum of the form 

111=1 

(2.9) 

one means by normal product : c,om: such a rear­
rangement of the creation operators ak: and annihi­
lation operators ak, that all operators ak are to the 
right of the operators ak:. The following definition 
will be equivalent to this. Consider the matrix 
element 

(0 I :H1 (!Jl): In); 

here IO) = ci>({O }) and In) = cl>({nk}), where n = ~knk; 
then the normal form :HI(cp): of HI is that form in 
which for any n the following equality holds: 

<OJ :HI(!Jl): In>- en<OI :qJn;\n)= Cn(OI!Jlnln). (2.10) 

Let the function U(cp) be given, and assume it 
can be expanded in Taylor series in the neighbor­
hood of the point cp = 0: 

co 

""' Um U(qJ)= ,.t..l-JqJm. 
m=!m. 

(2.11) 

Then the normal form of the operator U(cp) will be 
the function : U(cp): satisfying the condition 

(2.12) 

Substituting into (2.12) the explicit expressions for 
IO) and In), given in (2. 7) and (2.8), and carrying 
out the integration, we obtain 

00 -

Since according to our formulation of the problem 
:U(cp): is to be considered a function of cp, the 
series (2.14) must converge for arbitrary D. From 
the theory of orthogonal series (cf. e.g.C7J) it 
follows that it is necessary that 

Um -· 
lim--=- hfD)m = 0 

m-+oo l'm! 
(2.15) 

which implies that urn must satisfy the inequality 

(2.16) 

where 0 < u < 1/ 2 and A is some constant. This 
means that the function U(cp) in (2.11) is an entire 
analytic function in the complex cp-plane and be­
longs to the class su in the Gel 'fand-Shilov classi­
fication. [a] 

An example of such a function, which in addition 
satisfies also (2.9) is 

co 

U ( cp) = S dae-a. sin ( qJa11) , 

0 

It is easy to show that 

1 
O<a<-2. (2.17) 

co 1 
:U(qJ): = S daexp{- a+ 2 Da2a} sin(qJa11). (2.18) 

0 

It is important to note that for the interaction 
Lagrangians considered in [1-3], for which the func­
tion U(cp) had cuts in the complex cp-plane, the con­
dition (2.16) is not satisfied, since in this case 
urn ~ m! as m-oo, and therefore the series (2.14) 
for :U(cp): diverges everywhere, and consequently 
does not represent any function of cp. 

We compute the correction to the ground state 
energy of the source by means of perturbation 
theory. The first nonvanishing correction will be 
in the second order and is given by the well-known 
formula 

E 0<1>= ~· I(<D({O}),_Hr<D({nk}))]2 [Eo<o>_~nkc.ok)-\ 
{ nk} k 

(2.19) 

_!_ s d ·U( )· Hn(v/y2D)e-'Y'/2D _ 
- 'V. 'V • - Un, 

y2nD ( 2D) n/2 
-oo 

where 

D = _!___ ~-1-' v k 2c.ok 

(2.13) where the accent on the summation sign denotes 
the omission of the term with the quantum numbers 
of the vacuum (all nk = 0) in the sum over the in­
termediate states {nk }. We choose E~o> = 0. 
Making use of (2.7), (2.8), (2.11) and (2.12), we ob­
tain 

and at this stage of the computation the quantity D 
is considered finite and should automatically drop 
out of the expressions for physical amplitudes. 

The function :U(cp): can be determined from 
(2.13) by making use of the circumstance that the 
Hermite functions form a complete orthonormal 
system: 

:U(qJ):= n'l<~ ufri_.Dmf2hm( qJ )elfi'IW. 
m=! ym! 1/2D 

(2.14) 

(a> ({0}), Hr<D ({nk})) = gunll [nk! (2Vc.oktkJ-'1•, (2.20) 
k 

where 

Substituting (2.20) into (2.19) and carrying out some 
simple transformations one can obtain 

00 

E0(2l =-g2 S dt R(t), 
0 

(2.21) 
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00 2 

R(t) = ~~d"(t), 
n=l nl 

(2.22) 

where 

1 ~ e-1"'k 1 ~ dke-1"' 1 
d (t) = V f 2rok ;:;; (2l1)3 .) 20>;:, fi" . 

The series representing the function R(t) converges 
for all t, by virtue of (2 .16), but as t - 0 it increa­
ses very rapidly: thus, for the interaction Hamil­
tonian (2.1 7) we have 

R(t) ,.., exp {a(1/t)(1-2ar'}, 
t-+D 

where a is some positive constant. 
Thus, for the class of Lagrangians for which 

:U(cp): is a function of cp, the ultraviolet divergen­
ces of perturbation theory for a point interaction 
are not only not eliminated, but are substantially 
stronger than in the usual nonrenormalizable 
theories in which HI(CfJ) has the form of a poly­
nomial. 

Thus, a negative answer has been obtained to the 
question whether it is possible within the frame­
work of quantum field theory to consider Hr(cp) as 
the analogue of an ordinary potential in a Schro­
dinger equation. This means that the influence of 
the infinite number of degrees of freedom of the 
field is extraordinarily large and such that the 
stationary states of the total Hamiltonian H cannot 
be expanded in terms of the stationary states of H0• 

In the case of the Hamiltonians which were con­
sidered in [ 1- 3], when urn ~ m! as m-oo, the ser­
ies (2.22) for R(t) diverges for any t, but it turns 
out that the series is summable to a function which 
decreases as t- 0 so that the correction E62l to 
the energy turns out to be finite. 

3. FUNCTIONAL METHODS AND "FINITE" 
INTERACTION LAGRANGIANS 

In this section we apply to the model under con­
sideration the functional methods of the preceding 
papers [1- 3], where it has been shown that it is 
possible to construct a perturbation theory with­
out ultraviolet divergences for a class of interac­
tion Hamiltonians HI(cp) = gU(cp), where U(a), con­
sidered as a function of the complex variable o 
possesses the following properties: 

1) U(a) is analytic in the complex a -plane with 
a finite number of cuts and the integral of I U (o )12 
exists for any bounded domain. 

2) U(a) is real and has no singularities on the 
real axis and can be expanded in a Taylor series 
(2.11) around the point o = 0. 

3) At infinity U(a) satisfies the condition 

lim U(~) = 0. 
Ja;J--;oo a 

It follows from the considerations given above 
that for this class of Lagrangians there does not ex­
ist a function :U(cp):, Le., the Schrodinger equation 
(2.6) does not contain a potential :U(cp): but a diver­
gent formal series (2.14). 

We consider the expression for the S-matrix in 
the interaction picture 

... 
S = T exp{- ig S dtU(c:p(t))}, (3.1) 

-oo 

where 

c:p (t) = - 1-\ elk (ake-i"''+ak+ei"'''), (ak, ak,+] = 6 (k- k'). 
(2n)'i• .)Y2ro 

It is assumed that the interaction Lagrangian U(cp) 
is in normal product form. We shall see below 
how to realize this requirement. 

The basic problem of the theory is to find the 
S-matrix expanded in a series of normal products 
of the field operator cp(t), i.e. 

1"" co 

S=~mf~dtf ... ~ dtmSm(tt, ... , tm}:c:p(tt) ... c:p(tm):.(3.2) 
m -oo -oo 

If the expansion coefficients Sm(t1, ... , tm) are 
known, the amplitudes for the various physical 
processes will be the Fourier transforms of these 
functions: 

... 00 

5' m(Et, ... , Em)= ~ dt1 ... ~ dtm exp {i(E1t1 + ... + Emtm)} 
-co -co 

(3.3) 

The transition to normal ordering in (3.1) can 
be realized by means of Wick's theorem written 
in functional form [ 9] : 

00 

X exp{- ig ~ dtU(c:p(t)) }. (3.4) 
-co 

where 

dc(tt- t2) = <O!T(c:p(tt)<p(t2)) !O) 

1 r dk 
= (2n) 3 J 200 exp {- irolt1- t21}. (3.5) 

We expand the S-matrix in a power series in g, 
since we aim at constructing a finite perturbation 
theory. We have 

00 <- ig)" r- t 
S = ~ -n-1-J dtt ... J dtnRn(tl, ... , tn), (3.6) 

n=U -oo -oo 

where 
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X U(cp(t,)) ... U(cp(tn)) 

1 .. 82 
= exp{ i ~ ~e(t;- t;) 7J7i-:} 

i, i=t a, aJ 

X U(a1) ... U(an) I a;=fll(t;l. (3. 7) 

The diagonal terms of the sum in the exponent 
n az 
~-~~(O) 8al 
:i=l 

are left out. At this point the fact that U(cp) is in 
normal form is formally taken into account. In the 
language of ordinary perturbation theory the con­
tractions between operators cp (t) at the same in­
stants of time are eliminated. Finally 

iP 
Rn(t17 ••• , tn) = exp { ~ ~e(t;- t;) aa. .aa·} 

l.;;i <j..;;n i 1 

X U(a1) .. . ·U(an) I _ (t) 
CX;-'1/ j 

(3. 8) 

The problem is reduced to finding the radiative 
operators Fm(n) m in the expansion 

t··· n 

!J>mt(t1) ••• q>m•(tn) • 
X. .. 

md ... mnl 
(3.9) 

In the following computations it is extremely 
important to consider that the functions ~c(ti- ~) 

are real and positive, whereas the causal function 
~c(t) is a complex function of rather complicated 
structure (3.5). Fortunately, there exists a unique 
possibility for which the function ~c(t) becomes 
real and positive: this is the transition to a 
"Euclidean metric," based on the fact that for any 
amplitude -f'n(E1, ••• , En) of any physical process 
there always exists a domain for the variables 
E 1, ••• , En where this amplitude is real. In the 
relativistic theory this is called the Euclidean 
domain. In the model under consideration the am­
plitudes are defined by Fourier integrals of the 
radiative operators F~) m (~c(ti- tj)) in (3.9): 

1 ••• n 

F<n> (E1, ••• , En)=- 2n(- i)n+i b(E1 + ... +En) 
m1 ... m,., 

X Jn (E1o •.• , En}, (3.10) 
m.1 ..• mn 

00 00 

J<::!, ... m .. (E1, ... , En)= nin-! ~ dt1 ... ~ dtnll (t1 + ... + tn) 
-oo -oo 

(3.11) 

The "Euclidean" domain is in this case the region 
of sufficiently small Ej. The transformation to the 
real expression is realized by means of the sub­
stitution tj --itj and 

00 00 

f<'::., ... mn (E~, ... , En)= n ~ dt1 ... ~ dtnll(t1 + ... + tn) 
-oo -oo 

(3.12) 

1 ~ dk ~(t}=-- -e-6•ltl, 
(2:rt)3 2w 

(3.13) 

where ~(t) is real and positive. 
It is essential that Eq. (3.12) cannot be obtained 

from (3.11) by means of a displacement of the con­
tour tJ· --it~ if F(n) m (~iJ.) have essential 

-J m1 ... n 
singularities for ~ij = 0. Therefore we shall con­
sider (3.12) as the starting expression for the am­
plitude, and the transition to the physical region 
will be realized by means of analytic continuation 
in the variables Ej. 

Thus we see that the transformation to the 
"Euclidean" metric is not only a question of con­
venience, but is intrinsically inherent in the 
method of treating nonlinear interactions under 
consideration. 

Thus, we shall assume that in (3.8) the causal 
functions ~c(t) have been replaced by the functions 
~(t), defined in (3.13). In order to obtain the expan­
sion (3.9) from (3.8) we make use of the operator 
identity: 

x [ (cr;; + icri;) a: (cr;;- icr;;} ;a;]. (3.14) 

Substituting (3.14) into (3.8) and taking into account 
that the integrand in (3.14) contains translation 
operators in the variables C¥j, we obtain 

"" = :rt-n(n-1)/2 ~ ••• ) 

-oo 

rr d<J;j exp{ - ~ <Jil} 
!..;;i+;..;;n !.;;i+j..;;n 

X TI u( az + ~ (~(tz- t;))''•(cr;z + icrz;) 
1=1 I t..;;j<l 

+ :S (h(t;-tz))'h(cr!j-icri!))lat=~P(t,J" 
l<j.;;n 

(3.15) 

This expression is sufficiently complicated; how­
ever, one can convince oneself that the properties 
1) and 3) guarantee the convergence of this integral 
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for any n. Expanding Rn in powers of aj = cp(tj) 
one can obtain the radiative operators 
F(n) (D.(ti- tJ·)). There will be no ultraviolet 

m 1 •.• mn 
divergences either, due to condition 3). Thus the 
problem of expanding the S-matrix in a series with 
respect to normal products of the field operator 
cp(t) has been solved within the framework of per­
turbation theory. 

It is however essential to note that the operators 
(3.14) are not defined on the class of functions 
U(a) under consideration, since the operation of 
translation which has (3.15) as a consequence is 
mathematically inadmissible. This means that the 
series expansions for the radiative operators 
F(n) (D.(ti - tJ·)) in powers of D.(ti - tJ·) m 1 ••• mn 
diverge for all values of D.(ti- tj), i.e., are asymp­
totic expansions. The proposed functional method 
is simply a method of summation for these diver­
gent series. It is known [ 10] that any procedure of 
summation of a divergent series is non-unique, 
and different methods may lead to different func­
tions. 0 One can reestablish uniqueness by im­
posing supplementary conditions on the functions 
obtained from the summation. This is an essential 
problem, and it is not clear a priori whether the 
unitarity and causality conditions are sufficient 
conditions for the unique determination of the 
radiative operators F(n) 

m 1 ••• mn 
As an example we treat the amplitude for scat­

tering of a boson by a source in second order of 
perturbation theory, for the interaction 

r cp (x) 
H 1 = g J dxll(x) (i + fcp2 (x) )'lo (3.16) 

According to (3.12) we obtain 

"" 
fu<2l(E)= ~ dteEtp11(21(~(t)). (3.1 7) 

An explicit expression for the radiative operator 
F?{ (D.(t)) follows from earlier results [ 1]: 

F (2l(~) = d~ dx/o(x)[1- 2z2f2i12(t)] (3.18) 
u g Jf (1+z2f2~2(t))'i• , 

f (2l(E) = 2 r dtchEt r dxlo(x)[i- 2x2f2.d2(t)] (3.19) 
u g ~ ~ [1 + x2f2~2(t)]''' • 

0Expanding the operator (3.8) by means of a diagonal­
ization [2] of 

and subsequent use of Eqs. (3.14), may in general have the 
consequence that the functions F(n) obtained in this way mi ... mn 
differ from (3 .15) 

This integral converges for lEI< 2J.L, i.e., the am­
plitude is real up to the threshold for the produc­
tion of a second meson. The analytic continuation 
in E can be carried out as in the relativistic 
case [ 4J, and one can obtain for the imaginary part 
of fa' (E) 

[E/2] 2 

~ Un+i Im fu<2l (E)= g2 LJ --Qn (E), 
n=1 n! 

where 

1 r dkt r dk2n 
Qn(E)=-(2 )3 J-2 - ... J -2-ll(E-(J),- ... -(J)2n). 

:rt n (J)I (J)2n 

Unitarity is satisfied in this order and the asymp­
totic behavior of the imaginary part can be derived 
by means of the method used in [ 4]: 

Im /u(2) (E) ""' e(E/2) In Ea (E)' ElnE~ 1, 

where a(E) is a function of slower increase and E 
is expressed in units of the mass J-1.. 

CONCLUSION 

The above analysis has shown that Haag's 
theorem is true within the framework of the pres­
ent model, as well as in relativistic theory, i.e., 
there does not exist a matrix S(t, -co) for finite t 
and the stationary states of the total Hamiltonian 
cannot be expanded in series with respect to the 
stationary states of the free Hamiltonian. This 
however does not contradict the existence of a 
complete S-matrix mapping the asymptotic free 
states. It turned out to be possible to construct a 
finite S-matrix as the power series of the interac­
tion for a certain class of Lagrangians although 
unitarity has not been proved in higher orders. 
The mathematical methods employed are not rigor­
ous. It is very likely that one could obtain different 
finite S-matrices from the same Lagrangian, by 
using different methods of computation. The unique­
ness problem is extremely important. However we 
considered it essential to show that there exists a 
possibility of constructing a finite S-matrix from 
a nonlinear Lagrangian within the framework of 
some method, such that the S-matrix satisfies in 
all orders of perturbation theory the causality and 
unitarity conditions. 

In conclusion the author would like to express 
his gratitude to Prof. D. I. Blokhintsev and to I. T. 
Todorov and E. S. Fradkin for useful discussions. 
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