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The nonlinear additions to the Lagrangian of a constant electromagnetic field, caused by the 
vacuum polarization of a charged vector field, are calculated in the special case in which 
the gyromagnetic ratio of the vector boson is equal to 2. The result is exact for an arbri
trarily strong electromagnetic field, but does not take into account radiative corrections, 
which can play an important part in the unrenormalized electrodynamics of a vector boson. 
The anomalous character of the charge renormalization is pointed out. 

1. INTRODUCTION 

IN recent times there have been frequent discus
sions in the literature on the properties of the 
charged vector boson, which is a possible carrier 
of the weak interactions. At present all that is 
known is that if such a boson exists its mass must 
be larger than 1. 5 Be V. The theory of the electro
magnetic interactions of such a particle encounters 
serious difficulties in connection with renormali
zation. Without touching on this difficult problem, 
we shall consider a problem, in our opinion not a 
trivial one, in which the nonrenormalizable char
acter of the electrodynamics of the vector boson 
makes no difference. We are concerned with the 
calculation of the nonlinear corrections to the 
Lagrange function of a constant electromagnetic 
field interacting with the vacuum of charged vec
tor bosons with gyromagnetic ratio 2. As is well 
known, the analogous problem for the case of 
polarization of the vacuum of spinor and scalar 
particles has been solved by a number of 
authors. [1- 3] 

It must be pointed out at once that the physical 
aspect of the statement of this problem in the 
electrodynamics of the vector boson is not as in
disputable as in ordinary electrodynamics. The 
nonlinear corrections to the Lagrange function 
describe nonlinear effects of the type of scatter
ing of light by light, i.e., a set of processes which 
correspond to the series of diagrams shown in 
the figure. 

In ordinary electrodynamics a solid line corre
sponds to a vacuum electron. The vertex parts of 
such diagrams are proportional to the amplitude 
of the strong field, and the contribution from 

virtual photons gives only small corrections to the 
solution. If we are dealing with a vector particle, 
then we come into the domain of nonrenormal
izable theory and are not able to estimate in any 
reasonable way the contribution of the virtual 
photons to the processes represented in the figure. 
Although this is a very important point, all we can 
do here is to express the hope that in cases in 
which processes of this kind occur at small ener
gies of the external field the radiative corrections 
will be small quantities. Moreover, because of 
the assumed large mass of the vector boson the 
processes shown in the figure will begin to be im
portant much later than the radiative corrections 
to the corresponding solution in the electrody
namics of electrons. 

Of course, there is always the purely mathe
matical aspect of the problem. If the problem ad
mits of exact solution it is interesting to obtain 
this solution and study its special features. 

2. GENERAL THEORY 

We take the equation for the vector field in the 
form proposed earlier [4•5] 

No supplementary condition is imposed on the 
vector field, and in the free case it is a mixture 
of physical quanta with the mass m and spin 1 
and nonphysical quanta with mass m/( 1 + 2a )1/ 2 

(1) 
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and spin 0. The parameter y is the gyromagnetic 
ratio for the quanta of spin 1.1) 

If the Green's function of Eq. (1) is represented 
by an integral over a parameter proportional to 
the proper time 

Gmn(X, y}= -i ~ dse-im'•Umn(s; X, y), (2} 
c 

then the Lagrangian with nonlinearity taken into 
account can be written in the following form: 

L'(x}= -i ~ ds e-im'sgmnUmn(s; x, x). (3) 
c s 

The expression (3), whose derivation we have 
placed in the Appendix, is entirely analogous to 
those that occur in the cases of interaction with 
the vacuum of scalar and spinor fields.C3J The 
contour C in the complex s plane begins at zero 
and goes to infinity in a direction which assures 
the convergence of the integrals (2) and (3). 

Strictly speaking the matrix Umn ( s; x, y) 
must be found as the solution of a system of dif
ferential equations in five variables 

with the initial condition 

Umn(O; X, y} = gmn6(x- y}. 

It will suffice, however, for the special case we 

(4) 

(5) 

are to consider here (and for an understanding of 
the difficulties that arise in the more general case) 
to represent Umn formally as an exponential of a 

l)ln the Green's function (16) and Lagrangian (24) derived 
later on the basis of Eq. (1) it is possible to take the limit 
1 + 2a-+ 0 and eliminate the contribution of the nonphysical 
quanta. The immediate re"!son for this is the fact that in the 
special case we are considering (F = const, y = 2) there is a 
separation of the equations for the physical and nonphysical 
parts of the field analogous to that which occurs for the free 
field. All physical results contained in this paper have also 
been derived by us on the basis of the equations for the vector 
field with a set equal to - 1!2 from the beginning - in this way 
we avoid mentioning the nonphysical quanta at all. In that 
case, however, the derivation of basic formulas of the type of 
our Eqs. (2) and (3) is more complicated: not all components 
of the vector field Bn are independent, and the necessity of 
taking account of the supplementary condition that follows 
from (1) for a =- 1!2 is rather burdensome. Therefore we have 
stayed with a form of exposition in which the parameter 1 + 
2a = I; appears explicitly during the calculations and is made 
to go to zero only in the final results; but it must be clear to 
the reader that the present work has in essence no points of 
contact with the 1;-limit formalism of Lee and Yang.[5 •6 ] 

differential operator acting on the 6 function: 

U = exp {is(P2 + 2aPP + ieyF)}6(x- y). (6) 

To simplify the writing we have omitted the 
matrix indices. All three terms in the exponent 
fail to commute with each other in the general 
case. For F == const, P 2 and F commute, but PP 
commutes only with the sum P 2 + 2ieF, so that in 
this case the expression (6) can be rewritten in the 
form 

U = exp {is(2aPP + ie(y- 2}F)} 

x exp {is (P2 + 2ieF) }6 (x- y). (7) 

The argument of the first exponential still con
tains noncommuting matrices, and this causes the 
difficulty of obtaining a closed solution for y "' 2. 

In the special case of gyromagnetic ratio equal 
to 2, the expression (7) is greatly simplified. In 
this connection we point out the operator identity 

eis2o:P2 -1 
eis2a:PP = 1 + p P 

p2 

and the relations 
Peis(P'+2ieF) = eisP'P, eis(P'+2ieF)p = PeisP', 

which hold for F == const and follow from 

P (P2 + 2ieF) = pzp, (P2 + 2ieF) P = ppz. 

Setting y == 2 in (7) and using (8) and (9), we 
get the expression 

(8) 

(9) 

(10) 

( eisP's _ eisP' ) 
U(s; x, y) = eis(P'+2ieF) + p pz p (j (x- y) 

(~ = 1 + 2a), (11) 

which can be transformed into 

U (s; X, Y} = e-2eFseisP'(j (x- Y)- iPP 

• 
x ~ ds' e-2eFs' eis'P' () (x _ y). (12) 

s6 

The problem has now been reduced to that of 
finding one scalar function 

V(s;x,y) = eisP'()(x-y), 

and we can use the result already obtained by 
Fock [7J and by Schwinger L3J 

(13) 

1 1 X 1 
V(s;x,y)=~-.-exp{-ie (' dz[A(z)+ F·(z-y)} 

16:rt2 LS2 . .J 2 
)] 

1 sh eFs i } 
----Spln----- (x- y)eFcth(eFs) · (x- y) . 

2 eFs 4 
(14)* 

*sh =sinh. 
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It is easy to verify that the function V ( s; x, y) 
actually satisfies the differential equation 
-iBsV = P 2V, and the initial condition V ( 0; x, y) 
= o (x.- y) is satisfied owing to the fact that 

I . 1 1 ·c J't' I' 1 lffi ---- e-• x-y ~· = lffi --
H+O 1'6r£2 is2 s-++0 ( 2r£) 4 

X~ d4keih.'s+ih.(x-y) = 6 (x- y). (15) 

Substituting the expressions (12), (13), (14) in 
Eq. (2) and reducing the resulting multiple inte
gral to a simple integral (by changing the order 
of the integrations), we get the following propaga
tion function of the vector field in the constant 
electromagnetic field: 

1 \ ds { 1 sh eFs} 
G(x,y)=- 16n2 J-;2exp -2Spln~ 

c 

X [ e-im's _ ( e-im2s _ e-im'sr6) : J exp { _ ie 

X f dz[A(z)+}P·(z-y): 
y • 

- {- (x- y)eF cth(eFs) · (x- y)- 2eFs }. (16)* 

This function describes the simultaneous and in
dependent (independent only for y = 2 ) propaga
tion of the_ physical and nonphysical components 
of the field, and therefore the contribution of the 
latter component·can be eliminated by going to the 
limit ~ - 0. When we do this and also perform 
the differentiation in (16), we get for the Green's 
function the representation 

1 ..: 1 
Gmn(x, y) = - 16ll2 exp{ -ie ~ dz [A (z) +-z-F· (z- y)]} 

y 

1 ds { 1 sh eFs i 
X J --exp -im2s- ---Spin---- -(x- Y) 

c s2 2 eFs 4 

X eFcth(eFs) · (x- y)} {[ 1- m-2(-~-eF 

1 
X ( 1 + cth eF s) - -4- eF ( 1 - cth eF s) ( x - y) 

X (x- y) (1 + cth eFs)eF) ]e-2eF's} mn. (17) 

In the analogous expressions for the propaga
tion functions of scalar and spinor fields, and 
also in the limiting case of the free vector field, 
the path of integration can be taken along the posi
tive real axis. In our case this cannot be done be-

*cth = coth. 

cause of the exponential increase of the integrand 
along the real axis. It will be more convenient for 
us to find the actual restrictions on the position of 
the contour C after deriving the Lagrangian. 

3. THE LAGRANGIAN FUNCTION 

For the calculation of the Lagrangian we must 
substitute in the expression (3) the Umn ( s; x, y) 
given by Eqs. (12), (13), and (14). The same re
sult can be obtained more rapidly by using instead 
of U ( s; x, y) the simpler expression 

(J ( s; X, y) = [ eis(P2+2ieF') + -~- ( eisP'6 - eisP') J 6 (X _ y). 

(18) 

The legitimacy of this replacement in the La
grangian is proved in the Appendix. We get the 
Lagrangian in the form 

L'=-1-~ ds e-im'•[exp{-!-Spln sheFs} 
16n2 c s 2 eF 

X ( 1- Sp e-~eF•) - exp{- {-SpIn sh ::ss} J. (19) 

For the calculation of the traces in (19) we must 
note that the eigenvalues of the matrix Fmn are 
±F1, ±iF2, where 

This gives 

In writing the expression (21) we have sub
tracted an additive constant independent of the 
field and a term 

5e2 1 ds . , E2 - H2 E2 - H2 
---J -e-•ms =(Z-1-1)---

12n2 c s 2 2 

(22) 

This is added to the free Lagrangian and leads to a 
renormalization of electromagnetic field strength 
and of charge: 

/<.,' = EoZ-'''• H =HoZ-''•, (23) 

*ch =cosh. 
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where the index zero labels the "bare" values of 
charge and field strength which we have been 
using up to Eq. (21). By means of trigonometric 
transformations (21) can be put in the form 

L' = L/ (m2) + 3Lo' (m2) + Lo' (m2 I 6), (24) 

where 

L , 2) e2 (' ds _. , {F { F sin eF2s 
I (m = --J -e tms 2 l-.,.--

4n2 c s \ sh eF1s 

(2 5) 

(26) 

In the region 3rr /2 < arg s < 2rr and I e ( F 1 

+ iF2 ) s I » 1 the integrand in L6 goes to zero 
exponentially, and that in L1 behaves like 
s- 1e-im2s cosh e ( F 1 - iF2 ) s. Therefore for con
vergence of the integrals it is enough to take as 
the contour the straight line arg s = arg ( F 2 - iF 1 ). 

It is obvious that this choice of contour assures 
the convergence of the integral over s in the 
representation (17) for the Green's function. 

In the integral containing the first term in 
curly brackets in (25) we can rotate the contour C 
and place it along the positive real semiaxis. In 
the integral of the second term, and also in (26), 
the path can be placed along the negative imag
inary semiaxis. After this we get the final 
formula for the Lagrangian: 

L ' e2 rdt[_.,1F(FsineF2t F) -'F =-- J - e tm 2 1 - 2 - e m 1 1 
4n2 0 t sh eF1t 

( F sin eF1t _ F )] _i_ r .!-_~ e-m't 
X 2 sh eF 2t 1 + 16n2 Jo t 

( e2F1F2 1 E2 -H2 ) x ---e2---
sin eF1t · sh eF2t t2 6 · (27) 

Here we have dropped the contribution LJ ( m 2 I~ ) 
from the nonphysical quanta; it goes to zero for 
~ --. 0. 

The poles that arise in (27) at the zeroes of 
sin eF 1t must be evaded by passing above them. 
It can be seen immediately that ImL' = 0 only fof' 
F 1 = 0. In this case a coordinate system can be 
chosen in which E = 0 and H "'0. For F 1 > 0 
the Lagrangian has an imaginary part which de
termines the probability of pair production per 
unit time and unit volume. [a] In a purely electric 
field ( F 1 = E, F 2 = 0) this probability is equal to 

three times the probability of production of pairs 
of scalar particles: 

3e2E2 "" ( -1) n+l ( nnm2 ) 
l-Jl =31m Lo' = -- ~ exp ---

8n3 n=l n2 eE 
nm'feE 

3e2E2 (' dt 
=-- J -ln(i+t). (28) 

8n3 
0 t 

The quantity W cannot be derived in perturbation 
theory, since it describes the production of pairs 
by an infinite number of photons of infinitesimal 
energy. 

In conclusion we give the lowest terms of the 
expansion of L' in powers of the field: 

L' = ( :: rTo~4 [ 2: (E2- fi2)2 + 27 (EH)2] + ... (29) 

This is an asymptotic series, as.is also the case 
in ordinary electrodynamics,ca, 9J and the function 
L' (e) has an essential singularity at e = 0 [this 
singularity can be seen particularly clearly in 
Eq. (28)]. 

The asymptotic behavior of L' for eE/m2 - oo 

is given by the expression 

e2 7E2 eE 
La'= ----ln--. 

4n 8n m2 
(30) 

For eH/m2 - oo we get 

e2 7H2 eH 
La'= -----ln--. 

4n 8n m2 (31) 

Thus in our case also (just as in the electrody
namics of scalar and spinor particles) the non
linear effects increase only logarithmically, and 
they are small even at quite fantastic fields. 

4. CONCLUDING REMARKS 

The foregoing discussion has shown that the 
Lagrange function of a constant and uniform field 
that is induced by the interaction of the field with 
the vacuum of a charged vector field with gyro
magnetic ratio y = 2 gives in general a reasonable 
and noncontradictory description of the nonlinear 
effects that arise in this interaction. In any case, 
the function L' expressed in terms of renormalized 
quantities does not differ in its characteristic 
features from the corresponding function in ordi
nary electrodynamics. 

There is, however, a point on which we have 
been silent up to now and which may characterize 
an internal lack of complete consistency of the 
approach used. The renormalized charge and field 
strength which we have defined in Eq. (22) are 
connected with the corresponding "bare" quanti
ties through a divergent integral. If we formally 
cut off the integral at the lower limit with a large 
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mass A, so that 1/ A2 < s < co, we get from (22) 
and (23) 

( 5eo2 A2 )-1 A2 m2 
e2 = e02 1 ---In- with In- ~ 1 ~ -. 

12:rt2 m2 · m2 A2 (32) 

Unlike ordinary electrodynamics, where one has 

( eo2 A2 )-1 
e2 = e02 1 +-. -ln-12:rt2 m2 

our case gives e 2 > e3; besides this it is in 
principle possible that e2 < 0, which is a quite 
absurd result. 

As is well known, in electrodynamics the restric
tion 0 ::s Z ::s 1 on the Z-factor (charge renormali
zation) follows from the most general principles
the quantization rules and the Kallen-Lehmann 
representation. In our case it is impossible, 
generally speaking, to get the restriction 0 ::s Z 
::s 1 by starting from these principles, since now 

[Am (x, t), An (y, t)] =I= -igmn6 (x- y) 

and it is not known whether the Kallen-Lehmann 
representation exists in the renormalized theory. 
Nevertheless, the inequality Z > 1 seems ex
tremely undesirable, since it contradicts the ac
cepted physical interpretation of the Z-factor. 2 ) 

To determine to what extent the result obtained 
is due to the condition y = 2 and whether or not it 
is a reflection of shortcomings of the technique of 
calculation employed, the magnitude of the elec
tric charge renormalization has been calculated 
independently on the basis of the Feynman tech
nique. The expression obtained is 

z-t = 1 + _e_:_ (4- 6y- 3y2 + 3y(2- V) ) In A2 (33) 
48:rt2 £ m2' 

which agrees with (32) for y = 2, but for 'Y < 2, 
though indeed positive, is scarcely meaningful, 
since it contains two infinite parameters A 2 and 
C 1• All of this evidently means that in a nonre
normalizable theory with virtual photons not taken 
into account it is impossible to count on getting a 
reasonable value for the charge renormalization 
constant. 

In conclusion we must emphasize again that 
there are no rigorous reasons to think that the 
radiative corrections do not decidedly change the 
entire expression for the Lagrange function. By 
the way, the same can be said about any result of 
an unrenormalizable theory. 

The authors regard it as their duty to express 
their sincere gratitude to V. B. Berestetskil, B. L. 

2 )An is not the canonical momentum. This is due to the 
structure of the interaction of the electromagnetic field with 
the charged vector field [see Eq. (A.l) in the Appendix]. 

Ioffe, M. A. Markov, Nguyen Van Hieu, V. I. 
Ogievetskil, I. Ya. Pomeranchuk, A. P. Rudik, and 
M. I. Shirokov for critical discussions and valu
able comments. 

APPENDIX 

A Lagrangian for the vector field which leads 
to the equation (1) can be written in the form 

L =- (P~<Bm)*pkrn(P1Bn) + m2Bn*Bn, (A.1) 

where 

Pnrn = gmngkl + (2a + y)gkmgln- ygrgkn. (A.2) 

From this we get the symmetrized expression 
for the current: 

h = ~ ({(P1Bn), Bm*} + {Bm, (P1Bn)*})Pkzmn. (A.3) 

The equal-time commutation relations are of 
the form 

[Bm(x), :rtn(Y)]x,=y 0 = [Bm*(x), :rtn• (y)]x,=y, 

=-igmnO(x-y), [Bm(X),Bn"(y)]x,=y,=O, (A.4) 

where the canonical momentum is 

:rtn = -i(P"Bm)*pkomn. (A.5) 
By Eqs. (A.4) and (A.5) the vacuum average of 

the chronological product of field operators 

Gmn(X, y) = i<OJ 1/2{Bm(x), Bn*(y)} 

+ 1he(x- y)[Bm(x), Bn * (y)] J O>, (A.6) 

is the Green's function of Eq. (1): 

(Pl2gmh + 2aPmP" + ieyFmk- m2gmk)Gkn(x, y) 

This causal Green's function can be connected with 
the vacuum value of the current (A.3) 

i <OJfn(x) JO) = e lim (Px1Gnm(x, y) 
x-+y 

(A.S) 

if we understand the limit in (A.S) as the arithme
tic mean of the two expressions obtained by 
letting x approach y from the past and future 
directions. 

After averaging over the vacuum of the vector 
field, the action operator of the interacting elec
tromagnetic and vector fields is still a functional 
of the electromagnetic field. In this functional we 
keep only the dependence on a strong external 
field, neglecting effects of the quantized proper 
field, assuming that these effects are of the order 
of the fine-structure constant. Then the action S 
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is determined from the functional equation 

68= ~ d4x<Oilh(x) IO)Mh(x), (A.9) 

where the vector-field vacuum average of the 
current is connected with the propagation function 
of the vector boson by the relation (A.8). 

From this point on it is convenient to introduce 
matrix symbolism and regard the Green's function 
with which we are concerned as a matrix element 
of the inverse of the operator of Eq. (1): 

Gmn(x, y) = <m, xJGJn, y), (A.10) 

G = (P2 + 2aPP + ieyF- m2)-1 = (PpP- m2)-1·(A.ll) 

Let us consider the integral 

ids . , . S = - i J _ e-tm sSp etsPpP, 
c s 

(A.12) 

where the symbol Sp denotes the diagonal sum 
over spin and coordinate indices. This integral is 
the desired action function satisfying the relation 
(A.9), if the contour is chosen in such a way that 
the expression 

Gmn (x, y) =- i ~ ds e-im's <m, xl eisPyP In, y) (A.13) 
c 

is the causal Green's function. In the variation of 
(A.12) one must take into account the possibility of 
a cyclic permutation of the operators under the 
sign of the trace. 3 l 

Using the definition of the Lagrange function, 
S = J d 4xL' ( x ), we arrive at the formula 

L' (x) = - i J ~ e-im's gmn tm, xI eisPpPI n, x). (A.14) 
c s 

3 lStrictly speaking, the possibility of such a permutation 
requires additional justification, since it involves the neces
sity of changing the order of integrations in an improper inte
gral. In any given case the legitimacy of this operation can 
always be assured by a suitable choice of the class of func
tions over which the potential is varied. 

In Eq. (3) of the main text the matrix element 
( m, x I eisPpP In, x) was denoted by Umn ( s; x, x ). 

For F = const and 'Y = 2 we have 
eisP's _ eisP' 

eisPpP = eis(P2+2ieF) + p p 
p2 ' 

(A.15) 

as was shown in the passage from (6) to (11). It is 
obvious that the traces of the operators (A.15) and 

T.; = eis(P'+2ieF) + 1f4 (eisP's _ eisP') (A.16) 

are equal if it is possible to use a cyclic inter
change of the operators in the second term in (A.15). 
Since such an interchange calls for some caution 
(see the third footnote), we have also checked the 
equality in question by a direct calculation. There
fore in deriving the Lagrangian we can use instead 
of the matrix elements Umn ( s; x, y) of the op
erator ( A.15) the matrix elements Umn ( s; x, y) 
of the simpler operator (A.16), and this is what 
we have done in the main text. 
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