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A basis system of functions, whose set of quantum numbers includes the occupation numbers, 
is introduced, in the two-band approximation, for an excited radiation system consisting of a 
semiconductor and radiation field. A criterion for occurrence of interband multiphoton tran­
sitions is found with help of an appropriate perturbation-theory series. The absorption co­
efficient is calculated in the "one-photon" approximation and is found to be the same as that 
calculated by Bardeen, Blatt and Hall. [ 4 J 

1. INTRODUCTION 

A LEKSEEV, Vdovin, and Galitskil [l] have inves­
tigated the photon density oscillations in a system 
of two-level molecules. It has turned out that the 
system radiates in a strongly bound state, starting 
with a definite instant of time which depends in 
turn on the molecule density. The interaction of 
radiating objects with one another can also be 
described by expanding the system evolution opera­
tor F(t) in a perturbation-theory series [ 2]. A per­
fectly analogous approach will be applied below to 
a system consisting of an intrinsic semiconductor 
and a radiation field, contained in a volume V which 
constitutes the physical volume of the entire sys­
tem. 

In analogy with the earlier procedureC 2J, we 
can introduce a basis system of functions of the 
unperturbed Hamiltonian H0 of the semiconductor 
and the radiation field, such that the set of quantum 
numbers of the functions include also the occupa­
tion numbers of the bands and of the field oscilla­
tors. In the interaction representation, the state of 
the system at the instant of time t is determined by 
the action of the time-shift operator [ 3] S on the 
wave function of the initial state of the unperturbed 
system: 

lf (t) = s (t) '1';(0). (1) 

On the other hand, we can write two expansions; 
one for '11: 

'l'(t) = ~ Ct(t)'l't(O), (2) 

and another for S(t) 

"" ( ") n t 
S(t) = ~ ~T \ Hint(tl) ... Hint(tn)dtl···dtn. (3) 

n! J 
n=O 0 

From (2) and (3), taking into account the fact that 
Ci(O) = 1, it follows that 

(-i)tn+2k 
Cm(t) = ~ (2k + m)! 

k=O · 

x( mIT s Hint(t!): .. Hint(tlm-il+2k) I i). (4) 
0 

Here we have retained in the series (3) only the 
terms with "reabsorption" of photons, which lead 
to the same final state. If there are i photons in 
the initial state and m photons in the final state, 
we call this an (m- i)-photon transition (with 
emission or absorption). 

The transitions defined in this manner are real, 
that is, they conserve energy, and must be dis­
tinguished from the well-known virtual processes. 
Unlike the latter, the former exist only in excited 
many- or single-particle systems. For example, 
for one molecule excited at the initial instant of 
time, in the absence of a radiation field, and in the 
presence of only one type of oscillation, formula 
(4) takes the form 

(- i)2l 
c2.o(t) = 1=0 (2l)l 

' X ( 2,0 I T ) Htnt ... Hint { f21) dt1 •.• dt2112,0) , 
0 . 

(- i)2l+1 

Cl,l(t) =I~ (2l + 1)! 

X ( 1,1, T ) Hint (t1) ... Hint (t21+d dt1 ... dt21+1 ,2,0 >, 
0 

where c2,o(t) is the amplitude of the initial state 
and C1,1(t) is the amplitude of the final state 
[C 2, 0(0) = 1]. 
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We confine ourselves below to the modest prob­
lem of estimating the relative probability of exci­
tation of multi photon states in a semiconductor, if 
at the initial instant there is no radiation field and 
part of the electrons is transferred from the val­
ence band to the conduction band. The absorption 
coefficient which we calculate in the ''single­
photon" approximation (linear in the time), con­
fining ourselves only to the term S(1) in (3), coin­
cides with that obtained by Bardeen, Blatt, and 
Hall ~ 4 J. 

To clarify the qualitative aspects of the phe­
nomena, we confine ourselves to direct allowed 
transitions in an intrinsic semiconductor with 
spherical equal-energy surfaces. We consider the 
interaction of the carriers with the free radiation 
field, without account of the interaction with the 
phonons. The distribution function at the initial 
instant of time is chosen in the form of ''step 
functions'': 

{1, P<P~:, 
/c,v(P)= 0, P>P~v' 

where PK,v are the Fermi momenta of the carriers 
in the conduction band c and in the valence band v, 
respectively. 

To carry out the program we must find the 
Hamiltonian for the interaction between the car­
riers and the radiation field. The expression ob­
tained below for H is very similar to the corre­
sponding one obtained from other physical consid­
erations by Bonch- Bruevich and Rozman [ 5J. 

2. HAMILTONIAN OF THE SYSTEM 

We assume for the unperturbed Hamiltonian H0 

the sum of the Hamiltonian of the atomic conduc­
tion electron in the field of an ideal crystal lattice, 
and the Hamiltonian of the free radiation field. 

Without taking into account the Coulomb inter­
action of the electrons and holes with each other, 
or their interaction with the lattice vibrations and 
with the additional Coulomb field in the case of a 
lattice with an ionic bond, we start with the well­
known expression for Hint 

Hint = c-fjA. ( 5) 

Here j is the operator of current density in the 
semiconductor crystal, A the vector potential of 
the free radiation field, and c the velocity of light 
in vacuum. For the single-particle functions we 
choose Bloch functions normalized in the ground­
state and satisfying the well-known periodic con­
ditions 

~ ~ !pipa (r, s) !p!'p'a' (r, s) dV = 6u·6pp•600•, 

8 v 

!pzpo (r +am, s) =!pzpo (r, s). 

Here l is the number of the band, p the quasi­
momentum of the electron, and u the index of the 
spin state. We shall also need the formula 

(6) 

( 7) 
m 

where am is the vector of the m-th lattice site, G3 

is the number of unit cells, and the summation is 
over the principal region. 

If we confine ourselves only to electric dipole 
transitions, then the Hamiltonian (5) will be diag­
onal in the spin states of the electrons participat­
ing in the transition. Inasmuch as the total and 
angular momenta of the system are conserved, it 
is clear that as the electron goes from band v into 
band c, the resultant hole should have momentum 
and spin with signs opposite to those possessed by 
the electron. 

Since we are considering only allowed dipole 
transitions, the term proportional to A 2 in ( 5) 
makes no contribution to the kinematics in ques­
tion, for the corresponding transition is forbidden. 
Introducing operators for the creation and annihila­
tion of an electron in band c and of a hole in band v, 
and taking into account the foregoing and formulas 
( 5)- ( 7), we can write the following expression for 
the total Hamiltonian of the system ('ti = 1) 

H = ~ (ec (p) ap~apo + Ev (p) bp'Obpa) + ~ wkc~1,Ck>. 
~ ~~.~~ 

+ ( g; ~ ek>. ( w~V r atab.:"p-aCk>. + herm. conj.), 
p,a 

k, 1.~1,2 ( 8) 

where g = (27r) 112m, m is the mass of the atomic 
electron, 

6 =- ~ Uco· VU,odV, 
g 

and r2 is the unit cell volume. 
In writing down (8) we have assumed that by 

virtue of the fact that the transitions are allowed, 
the functions U depended little on the quasimomenta, 
so that they can be taken for p = 0; in addition, we 
neglect the photon momentum. The allowance for 
the recoil of the electrons (holes) will be discussed 
briefly later. 

It follows from (8) that, generally speaking, it 
is impossible to use the representation 

H= L H;, (9) 

where the summation is over the individual car-
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riers. Such a breakdown is possible only when the 
photon density is large, so that the contribution 
made to it by the radiating system can be neglec­
ted and we can assume the operators ck.i\ and Cki\ 
to be simply c-numbers. In the latter case the 
carrier motion can be considered independently of 
the radiation field. 

3. SINGLE-PHOTON TRANSITION 

Let us consider the absorption of one photon. 
Here and below the minus sign will denote quantum 
numbers that determine the electron state, and the 
plus sign the hole state. The initial state of the 
system, when we have an electron-hole vacuum and 
a photon (k, .\), is defined by the vector 

while the final state is defined by 

The matrix element of the transition is of the form 

where 

F (t)= exp[i(ec(P=-)+ev(P+)-w(k))t]-1 
P_P+k i(ec(P-) + Bv(P+)- w(k)) 

Averaging I (f I s<1l I i) 12 over the electron motion, 
we obtain 

W . _ g2~ (1- n_ (po)) (1- n+ (po)) 2 ,.. ( ( ) 
' 1 - 3 wkV :rtu ec P 

+ev (p) -w (k)) t; 

~ ~ = 4~ ~ l ;ek, 12 do. (11) 

We have used above the well-known representation 

1 sin2 xt 
6(x) = lim----2-, 

1-+oo :rt X t 

which holds true in the integral limit, when the 
time t is larger than 1/ t::,.w, where t::..w is the inter­
val of "smearing" of the electron and hole dis­
tribution functions. 

However, even in the case when we cannot intro­
duce 6-functions, the time dependence of the tran­
sitions remains unchanged, and only the numerical 
coefficients change. This pertains both to single­
photon and multiphoton transitions. 

We assume, introducing effective masses, the 
usual dispersion law 

p2 
2c(P)= ~+-, 

2mn 

pZ 
ev(P) = -2 -, mp 

(12) 

where t::.. is the width of the forbidden band. 
Summing (11) over all final states with account 

of (12), we obtain the probability for absorption of 
a photon with a frequency in the interval w, w + d w: 

, 2 g2 £2 ~t ( 2~ )''' dW'~'(w) = 3:rt3 fiZcafi -li'(w- ~) wVtdw (13) 

(the constant n was introduced into the final re­
sult). 

Introducing with the aid of the equation 

~ = limt-.fcv/2 

the oscillator strength fc, v• we can rewrite (13) in 
the form 

2e2~2/co ~ ( 2~ )''' dW'~'(w) = 3:rt21ic3 m T (w- ~) Vtdw. (13') 

By definition, the absorption coefficient for a unit 
interval of the frequency w is equal to 

N(w) 
a(w) = --· w0'~'(w), (14) 

c 

where N(w) is the refractive index, c the velocity 
of light in vacuum, and w6 (w) the probability of 
absorbing a photon with frequency w per unit time 
and per unit volume. 

Substituting (13) or (13') in (14), we arrive at an 
expression with the same dependence on the photon 
energy and on the reduced mass as the equation 
obtained in[ 4J. 

In that case when "single-photon" recombina­
tion is considered, it is necessary to introduce in 
formulas (13) and (13') the "unit step" function 

8 = {1, P<' {PcF, PvF}min. 

0, P > {PcF, PvF}min 

Allowance for the recoil of the catriers upon 
absorption (emission) of photons leads to rather 
trivial results. The recoil is largest for carriers 
with minimal effective mass. In the absorption 
(emission) of a photon the process begins with a 
photon energy equal to 

(i) pr = ~ + lik2 / 2m, 

where m is the mass of the carrier experiencing 
the recoil. In addition, an account of the recoil 
leads to the "cutoff" of the distribution functions 
at a quasimomentum equal to the photon momen­
tum. In this case the density of the carriers which 
are ''forbidden'' to participate in the direct tran­
sition turns out to be quite large (at k ~ 3 x 104 cm-1 

we have n ~ 10 12 cm-3 ). Thus, the calculations 
made are valid for sufficiently large occupation 
numbers of the bands and energies of the photons. 

The analysis of the carrier·recombination proc­
esses near the bottoms of the bands should be car-
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ried out both with account of the interaction with 
the phonons, and with account of the possible ex­
citon and polaron states. 

4. TWO-PHOTON TRANSITION 

Assume that in the initial state the electrons 
and holes occupy levels up top~ and p~, respec­
tively; there are no photons. In the final state 
there are photons of two sorts (k, A.) and there 
are no pairs (p'_ a~ ; p:, a:) and (p~, a::; p.;_', a.;_'). 

Disregarding for the time being, as before, the 
"reabsorption" processes, that is, the kinetics of 
the two-photon state itself, we select from (4) only 
the very first term with k = 0. Leaving out the 
sign of the T-product we have for s< 2l the matrix 
element 

(/I S<2l / i) = (- i)2 ~2 ::v ( ek),;)2 [ n (p _' cr_') 

(15) 

Expression (15) must be understood as a direct 
transition with simuLtaneous emission of two pho­
tons, whereby each pair of carriers recombines 
"independently" and the energy conservation law 
is satisfied in both cases. But at the same time 
the recombining pairs are bound in the sense that 
the following equation is satisfied: 

(16) 

Indeed, taking the square of the modulus of (15) 
and carrying out all the summations, we obtain for 
the probability of two-photon recombination with 
emission of two coherent photons (we have intro­
duced n) 

dW2Y(ro) = ~ g'* s' (_!A-_ ) 3 (ro-Ll) V6t2dro. (1 7) 
25:rt4 h4c3 1i 

Comparing (17) and (13) we see that condition 
(16) is indeed satisfied. Introducing the oscillator 
strength with the aid of the equation 

14 = fi2m21l2fcv2 / 4 

we can rewrite (1 7) in the form 

dW2Y(ro) = ~---fcv2 ~ (ro-Ll) V6t2dro. 
1 g4m21l2 ( )3 

25:rt4 fi2c3 " 
(1 7') 

In the case when there are two photons of different 
types, (k, A.) and (k', A.') in the final state, that is, 
radiation of incoherent photons takes place, the 
averaging over the electronic motion is of the form 

1 -
I ;ek~ 121 sek·~· 12 = 9 (s2)2. 

Carrying out independent integrations over the 
final state of the photons, we arrive at the formula 

(18) 

which does not depend on the wavelength. Thus, 
there is no spontaneous coherence in the semicon­
ductor. 

A description of the foregoing system in the 
time-linear (single-photon) approximation is valid 
only in the case when the following inequality 
holds: 

dW2Y I dWY ~ 1. 

Assuming for an estimate (w - .0.) ~ 1014 sec-1, 

l.l ~ 1028 g, and fcv ~ 1, we get 

dW2Y I dWY ~ 2 ·1W3t; 

the numerical factor here has the dimension of 
frequency. 

(19) 

The dependence of (19) on the concentration is 
not strong; it is porportional to (w F - .0.) 112• The 
observations concerning the allowance for recoil 
are the same here as before. 

The author is grateful to B. A. Trubnikov and 
A. A. Vedenov for interesting discussions. 
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