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The cross sections for dissociation and for the excitation of higher vibrational and rotational 
bound states through collisions between atoms and diatomic molecules are calculated for 
relative-motion energies that considerably exceed the dissociation energy. 

1. Diatomic molecules which collide with atoms 
can undergo dissociation resulting either from 
electronic transitions or from the direct excita­
tion of higher vibrational and rotational states 
lying within the continuous spectrum. When the 
velocities of the incoming particles are of the 
same order or greater than the velocities of 
atomic electrons, dissociation results mainly 
from electronic transitions. At lower velocities 
the role of electronic transitions is usually re­
duced sharply; the relative contribution of vibra­
tional level excitation to the dissociation cross 
section increases and becomes predominant when 
the collision energy is of the same order as the 
dissociation energy. The probability of this proc­
ess has been calculated by Sal peter[ t] and 
Bauer, [ 2] and by Sayasov and Ivanov [3] for neu­
tron-induced dissociation. Salpeter determined 
the dissociation cross section of H2 on the basis 
of the cross section for energy transfer in elastic 
two-body collisions. Bauer calculated the disso­
ciation cross section of the H2 molecule for colli­
sions with H atoms in the Born approximation, but 
without considering the excitation of rotational 
levels. 

In the present work we have used the approxi­
mation of sudden perturbations and the Born ap­
proximation to calculate the total cross section 
for the dissociation of diatomic molecules col­
liding with atoms when the energy of relative 
motion considerably exceeds the dissociation 
energy. It is found that the quantum mechanical 
expression for the cross section almost coincides 
with the classical cross section in the case of very 
small ratios of the zero-point energy of molecular 
vibration to the dissociation energy. However, as 
the ratio increases a considerable discrepancy 
appears, which in the case of some molecules 
amounts to 20%. This difference exists for all 
energies of the colliding particles and is asso­
ciated only with the quantum mechanical descrip­
tion of the molecule. We have also calculated the 

cross section for the excitation of vibrational and 
rotational states close to the limit of the continuous 
spectrum. We have considered only collisions in 
which the electronic states of the colliding parti­
cles remain unchanged. 

2. The choice of the interaction potential is very 
important in connection with atom-molecule colli­
sions. We shall consider collisions for which the 
effective interaction time T is so small that dis­
sociation can occur only when a very small dis­
tance separates the nucleus of the incident atom 
from one of the molecular atoms. When this dis­
tance is small compared with the equilibrium sepa­
ration r 0 of the molecular nuclei, the interaction 
of the atom with the molecule can be represented 
as the sum of interactions with each of the atoms. 
We shall obtain the distance at which one of the 
molecular atoms begins to receive sufficient 
energy for dissociation. If Ap is the momentum 
transferred to one of the molecular atoms by the 
incident atom, dissociation requires fulfil1m{mt of 
the condition 

( 1) 

where Jl is the reduced molecular mass, Mi 
( i = 1, 2) are the masses of the molecular atoms, 
and D is the dissociation energy. Since 

+oo I ~ dV I ZZ;e2 
dp= .) -dt ~--

dR vRi 
-00 

(estimated on the basis of a Coulomb interaction) 
it follows from (1) that the largest impact param­
eter for which dissociation will occur at a given 
incident velocity v is given by 

(2) 

where Z ie is the charge of the i-th molecular nu­
cleus and Ze is the charge of the incident nucleus. 
Therefore the investigation of dissociation requires 
knowledge of the interaction potential for distances · 
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not exceeding Ri. At these distances the atom­
molecule interaction potential can be represented 
as the sum of spherically symmetric potentials: 

V=v~(l R-;/1) +Vz(IR+;;rl). (3) 

where r is the separation of the molecular nuclei 
and R is the distance between the incident atom 
and the center of gravity of the molecule. If the 
molecule consists of heavy atoms, V1 and V2 can 
be represented by either a screened Coulomb po­
tential or Firsov's potential for isolated atoms, [ 4] 

because the inner regions of heavy atoms are only 
slightly distorted by molecular binding. When 
Ri « aj"1, where ai is the screening constant, V1 

and V2 are pure Coulomb potentials. It is, of 
course, necessary that the distance to the turning 
point Rt be much smaller than Ri. This condition 
is fulfilled, since Rt /Ri ~ ( D/E 0) 1/Z « 1, where 
E 0 is the energy of the incident atom. 

3. Since we are considering only the relative 
velocities of approach that bring about a collision 
between the incident atom and only one of the 
molecular atoms, the dissociation cross section 
can be derived if we know the cross section o-i for 
the transfer of a given momentum tiq (or a given 
energy Ll) to each of the molecular atoms and the 
probability of molecular dissociation wi (Ll). The 
dissociation cross section is then 

2 Ei 

a=~~ cr;(11)w;(l1)dl1, (4) 

i=i D 

where Ei is the maximum energy transferred to 
the i-th atom. We shall assume that the elastic 
scattering cross section o-i (Ll) is known. Thus, 
if Vi is the Coulomb interaction potential, in the 
center of mass of the particle + molecule system 
we have 

(5) 

The dissociation probability wi (Ll) can be cal­
culated in a general form, not depending on the 
kind of interaction potential, in the sudden pertur­
bation approximation. The conditions permitting 
this approximation are T « T, T « t, where 
T ~ Ri/v is the collision time for dissociation, 
T ~ ti/D is the characteristic time associated 
with molecular transitions, and t ~ Ri /vi is the 
time required for the movement of the dissociated 
atoms through distances of the order Ri. 

Since the cross section for the transfer of large 
values of Ll decreases rapidly as Ll increases, 
dissociation occurs mainly through the transfer of 

the energy 4 ~ D to a molecule. Consequently, 
the relative velocity of dissociated atoms is v 1 

~ ( D/iJ.) 11 2. The condition T « t is thus fulfilled 
for v » ( D/iJ.) 1/Z. The condition T « T leads to 
the following limitation of the velocity of relative 
motion: 

v > (ZZ;e2 In) If, (~-tD I 2M;2) If., 

whereas (2) gives 

v ;;> (Z2Z;2e"~-t I 2r02Divli2) If,, 

(6) 

(7) 

The more severe limitation of the two conditions 
(6) and (7) must, of course, be used. At the veloci­
ties determined by these inequalities we also have 
simultaneous fulfillment of the conditions for the 
employment of the potential (3) and the theory of 
sudden perturbations. It is important that (6) and 
(7) are milder conditions than the conventional 
condition for the Born approximation. Thus, for 
the dissociation of H2 molecules by particles of 
charge Ze the use of the Born approximation re­
quires v » Ze2/ti, whereas (6) and (7) lead to 
v » 0.1 Ze2/ti. 

We shall now calculate the dissociation proba­
bility w (Ll) in the sudden perturbation approxima­
tion, where the probability of a transition into an 
interval dE of final states accompanied by the 
transfer of momentum tiq to the i-th nucleus will 
be 

dw;(q)= ~Is 'IJ/(r)exp(i ;iqr )\jJ;(r)dr raE, (8) 

where 

( 2~ )If. 1 L ~ J \jJi(r)= - -_-exp --(r-r0)2 
nro2 2ynr ro2 

(9) 

is the wave function of the molecule in its vibra­
tional and rotational ground states; 

( 2~-t )'f, 1 [ 1 f Jt J 'Pt(r) = - -=-Sin -) p(r)dr+-
nn ryp(r) n 4 r, 

sin[(Z + 1l2)8 + "IJ 
X (10) 

}'sine 

is the quasiclassical wave function corresponding 
to the final state of the dissociated molecule. 
Here {3 = IJ.wr5/2ti » 1, where w is the vibrational 
frequency of the molecules; 

p(r)={ z,t[ E- U(r)- ft2(Z2~~z)2]f'; 

U ( r) is the electronic ground term; E is the 
relative energy of molecular atoms in the final 
state. 

We shall use the results obtained in [s], where 
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the integral in (8) was calculated. After inte­
grating over E and replacing the summation over 
l by al). integral, we obtain 

w;(q)= 4y;(~rt~)'f, Uo/et;' dzJ, ~t exp(- ~; ), 

where 
Vi = ~-troq I M;, 

eo = h2 I 2~-tro2, 

Uo = D + 1l2hw. 

(11) 

Considering that in the c.m. system of the mole­
cule the energy transferred to the i-th atom is 

1-l ft2q2 

d = Mi 2Mi = Vi2eo, 

after integrating over z we obtain for the disso­
ciation probability 

2 X 

<D (x) =-= ~ e-1' dt. 
l'rt 0 

]}. 

(12) 

4. The total dissociation cross section, which 
is obtained by substituting (12) and (5) into (4), can 
also be obtained in the Born approximation. Since 
this approximation corresponds to large colli­
sional velocities ( v » ZZie2/ti), it follows from 
(2) that dissociation will occur only if the incident 
atom approaches very close to the molecular 
atoms. This indicates that the interaction poten­
tial can be adequately represented by a Coulomb 
potential or, more generally, by a screened 
Coulomb potential. In the c.m. particle+ mole­
cule system the differential dissociation cross 
section is 

( M)''' Vit=(2:rth}-'" p ~~ ¢/(r)V(r,R) 

X exp [~(P- p') R] 'ljl; (r) dr dR. (14) 

Here p and p' are the momentum of the incident 
particle before and after scattering; M is the re­
duced mass of the particle+ molecule system; IJ!i 
and l/Jf are the wave functions given by (9) and 
(10); V( r, R) is the interaction potential in the 
form (3) with Vi (p) = ZZie2p-1e-aiP, where a is 
the screening constant. Substituting the wave 
functions into (14) and integrating over R, we ob­
tain 

W(J} 

ro 
NoCL 

d8dx 
X exp [- fJ ( x -- 1) 2 + iy1,2x cos 8] --=-. 

l'p(x) 

11,2 has been calculated in [ 5]. Substituting Vif 
into ( 13) and integrating over the final states, we 
obtain 

In this expression we can neglect the quantity 
bi = J.tfi 2a~ /Mt, which represents a negligibly 
small screening effect. 

The Born approximation and the theory of 
sudden perturbations therefore yield the same 
result for velocities that permit the assumption 
of a Coulomb interaction potential, although these 
velocities can be much lower than the limit im­
posed by the Born approximation. We arrive at 
this result because the formula representing the 
cross section for the transfer of the energy 6. in 
the case of a Coulomb interaction is of the same 
form at both high and low velocities. The two 
approximations differ at low velocities: 

ZZ;e2 ____, ( ZZ;e2 \ 'I• ( 11D \ ''• -->v> --I --J 
h . h I . 2M;2 t 

in the case of a non-Coulomb interaction potential. 
5. For an arbitrary interaction (3) the total 

dissociation cross section is given by (4), where 
w (6.) is independent of the kind of interaction po­
tential. Equation (4) can be used to calculate the 
cross section for neutron-induced dissociation 
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FIG. 2. 

after making the substitution da (.6.) = a0E01d.6., 

where a0 is independent of 6. The form of 
w (6) is shown in Fig. 1 for NaCl, H2, and HgH; 
6 is given in units of D for each case. The ratio 
liw/2D for these molecules is 0.006, 0.061, and 
0.231, respectively. For n- 0, Eq. (12) for 
w ( 6) goes over into the classical result: w ( .6.) 
= 0, .6. < D and w(.6.) = 1 for .6. ::>:D. 

The classical dissociation probability is repre­
sented in Fig. 1 by a step function. Equation (12) 
shows that the step lacks precise definition within 
~ ( liw/2D) 112. When a ( 6) is determined from the 
Coulomb interaction (5), the· classical dissociation 
cross section will be 

(16) 

We note that the dissociation cross section a 
= rr ( Ri + R~) based on (2) agrees with ( 16) except 
for a numerical coefficient. 

In the present case the quantum mechanical 
dissociation cross section will differ from the 
classical result only by a coefficient depending 
on the molecular parameters w and D: 

Uqu= a(w,D)acl, 
00 

a(w,D)= ~ d-2w(d)dd. (17) 
l 

Here 6 is given in units of D. For example, in 
the cases of NaCl, H2, and HgH we have a = 1, 0.9, 
and 0.8, respectively. Therefore the difference 
between the quantum mechanical and classical 
cross sections is sometimes as large as 20%, al­
though the difference is only a few percent for 
most molecules. For neutron-induced dissocia­
tion the difference is unimportant (when E0 »D), 

because the cross section for the transfer of 
energy .6. is independent of 6, and the total disso­
ciation cross section is given by 

Eo 
O"o C Eo-D 

a=--) w(d)dd ~ ao-E-. 
Eon o 

This result agrees with [3]. 

6. The foregoing formulas can be used to deter­
mine the cross sections for the excitation of 
higher vibrational and rotational states. This is 
possible because the energy spectrum of these 
states is close to the continuous spectrum, and 
their wave functions can also be represented by 
(10). Utilizing (4), (5), and (8) and performing 
integrations analogous to the foregoing, we obtain 
the following differential cross section for the ex­
citation of bound states: 

da = v ~ 11z2e4 ( z12 + z22 ) 

dE 2 v2fhwD \ M12 M22 

x r d~-{ _ Ei [ _ 2D _@'__- d)2 ]}. 

0 d 1' hw 4d . (18) 

where 
"" e-t 

-Ei(-x)= ~ -t-dt; 
X 

E is the excitation energy measured from the 
bottom of the potential well V ( r); E and 6 are 
given in units of D. Figure 2 represents the cal­
culated values of v2Z-2do/dE for NaCl, H2, and 
HgH molecules, with v given in units of e 2/n and 
a in units of rra5. 
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