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The nonlinear equations for slowly varying amplitudes and phases of the electric field strength 
are considered. An expression is obtained for the effective damping decrement, in which the 
change in the spectrum brought about by the dependence of the distribution function on the slow 
coordinates and time is taken into account. It is shown that in the approximations of three, 
four, etc. waves, the plasmon equation is replaced by a system of equations for a larger set 
of spectral functions, the number of which depends on the number of interacting waves. 
Stationary solutions of the spectral-function equations are presented. 

A system of kinetic equations was obtained in the 
works of Lenard, [ 1] Balescu, [ 2] Silin, [3] and 
others for the distribution function of charged 
particles in a spatially homogeneous plasma. This 
set of equations differs from the Landau equations 
in that more accurate account is taken of the plasma 
polarization. 

If waves are excited in a plasma to an apprecia­
ble extent, the relaxation times of which are com­
parable with the relaxation times of the distribution 
functions fa, then it is not possible to obtain closed 
equations for fa (kinetic equations).C4• 5J 

For states close to equilibrium, one can use the 
set of equations for the functions fa and the spec­
tral function of the electric field intensity 
(6E ·6E)w,k,t·[ 5J 

Recently, interest has been strongly developed 
in the investigation of nonlinear electromagnetic 
processes in plasma. In the works of Kadomtsev 
and Petviashvili, [SJ Silin, [?] Iordanskil and 
Kulikovskil [BJ, more complete equations were ob­
tained for plasmons by different methods in the 
case of a spatially homogeneous plasma, with ac­
count of nonlinear interaction. The works of 
Vedenov and Velikhov, [ 9•10] Drummond and Pines,C 11J 
Karpman, [!2] Shapiro, [ 13 ] and others were devoted 
to the so-called quasilinear approximation for a 
set of equations with a self consistent field (the 
Khokhlov system of equations). These two approxi­
mations are in essence different limiting cases.C 4•5J' 

In references [ s-13] the following approximations 
were made in some form or other: 

1. The phases of the random oscillations are 
rapidly changing, i.e., they are established much 
more rapidly than the amplitudes of the function fa· 
As a consequence, only the equation for the inten-

sity (the equation for plasmons) is used. 
2. The quadruple and triple correlations are en­

tirely expressed in terms of the pair correlations. 
In the same way, it is assumed that the nonequili­
brium state of the plasma, with account of interac­
tion of the waves, is completely determined by the 
initial values of the functions fa and the spectral 
function of pair correlation of the field. 

We consider in the present paper the nonequili­
brium turbulent state of the plasma, in which the 
mean fields are equal to zero. In the account of 
the nonlinear interaction of the waves, it is assumed 
that the small quantities are not the fields but the 
tensors that determine the nonlinear contribution 
to the induction vector. In this connection, the ap­
proach is similar to that which is used in nonlinear 
optics (see the book of Akhmanov and KhokhlovC 14J). 
In the first section, equations are obtained for the 
random complex amplitudes of the field with ac­
count of change in the spectrum. These equations 
allow us to find the equations for the real ampli­
tudes and phases. Then the stationary solution of 
the equations for the correlation functions is con­
sidered in the cases of two-, three-, four-wave 
interactions. The nonstationary equations for the 
correlation functions are considered. It is shown 
that the equation for the spectral function of pair 
correlation can be obtained only in the case of two­
wave interactions. In other cases, a set of equations 
is obtained for a larger number of correlation func­
tions. Under the condition of quasi-stationarity of 
the correlations of the field, closed equations, which 
take into account the nonlinear interaction of the 
waves, are obtained for the functions fa (kinetic 
equations). 

As in the previous researches, [ 4•5] we shall 
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determine the microscopic state of the plasma by 
specifying the microscopic phase densities 

N(l(q, p, t) = ~ 6(q- q;a(t) )6(p- Pia(t)) 

for each component a and the microfields EM and 
HM. If there are no external fields, then the mean 
fields EM HM = 0. The equations for the func-
tions 

Ia. 6Na = Na- nafa, 

6E = E" - EM, 6B = H'1 - HM 

have in the nonrelativistic case the form 

ata ata a-----+v-= -ea-6Na<'IE, (1) 
at aq ap 

a6Na a6Na ata a --at+vaq- + eana6E ap =- ea ap o(6Na6E), (2) 

1 aoE ~ rot 6B = ---+ 4n ~ ea voN a dp, 
c at 

div oB = 0, (3)" 
a 

1 a6B 
rot6E=---­

c at ' 
div oE = 4n ~ ea ~ 6Na dp. (4) 

a 

On the right hand side of Eq. (2), 

o(6NaoE) = 6NaoE- M 7aOE. (5) 

1. NONLINEAR EQUATIONS FOR THE RANDOM 
DEVIATIONS 6E 

We consider the case of a Coulomb plasma. We 
express the random deviation 6Na in terms of oE 
by means of Eq. (2). We represent 6Na in the form 

(1.1) 

The first term on the right hand side depends 
linearly on oE, while the second is nonlinear. Using 
(2), we write down the stationary expression for 
oNi in the form 

( a fa (p, t- T, q) J' d 
X a T. 

p q=q-v' 

(1.2) 

The initial value of 6Na here is not written out 
since it is important only for the determination of 
the spontaneous term, which does not contain the 
spectral function. It is unimportant for large de­
partures from the equilibrium state. 

To account for the nonstationarity and inhomo­
geneity of the random process in a plasma, we as­
sume that 6Na and oE depend on fast and slow 
variables as functions of time and coordinates; for 
example, 

*rot = curl. 

6E = 6E (J.tt, J.tq, t, q). 

We shall expand in a Fourier integral in the fast 
variable: 

1 
6E (flt, flq, t, q) = (2n:)4 

X~ (IE (flt, flq, ro, k) e-iwt+ikq dro dk. (1.3) 

We shall see below that, in the zeroth approxima­
tion in I-'• the function oE (J.tt,J.tq,w,k) differs from 
zero only for w and k which satisfy the equation 

e0 (ro, k, J.tt, J.tq) = 0, (1.4) 

Here Efj is the real part of the dielectric permit­

tivity tensor of the Coulomb plasma in the linear 
approximation. The dielectric permittivity depends 
on the slow variables through the distribution func­
tions fa (.u t,J.tq, p). If we take this dependence into 
account, then Eq. (1.4) will connect the two func­
tions w = w(J.tt,J.tq) and k = k(J.tt,J.tq). In order to 
take into account the dependence of w and k on 

1-' t and J.tq, we use in place of (1.3) the equation 

. 1 
bE (flt, f!q, t, q) = (2n)4 

X ~ oE (!lt' f!q, ro, k) ei'F(t, q) dro dk, (1.5) 

which serves as a definition of the complex ampli­
tudes. Here 

--a'l' 1 at= ro (~-tt, J.tq), 

In the determination of the equations for the func­
tions 6E(J.tt,J.tq,w,k), we regard the arguments 
w, kin them, by definition, as constant parameters. 

We substitute the expansion (1.5) in Eq. (1.2), 
expand in a series in T, and keep all terms of or­
der 1-'. Equating the coefficients of the expansion, 
we obtain the following expression: 

{ a 1 a ( atu ) +eana ----- oE--
aro (t) - kv at \ ap 

( ata ) a 1 a ( ata ) X 6E- ------ <'lE-ap ak (t) - kv aq ap 

__ 1 [( _!!!!___!_ + alc; __ a )-a _1_ ](<'IE at a )1 
2 aq; am aq; fJki fJk; ro- kv iJp / f · 

(1. 7) 

In order to express oN~Z in terms of oE, we 
proceed in the following fashion. We assume that 
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the nonlinear term is of order of Jl· On this basis 
in first approximation in Jl, one does not have to 
take into account derivatives with respect to JJ.t 
and J-tq. By eliminating the function oNa from the 
right hand side of Eq. (2) we can represent oNa in 
the form of a series in oE with the help of the same 
equation. 

We now write down the first two terms of the 
series for oN~ 1 : 

. 6N nl = - 1- \ dQ' dQ" 6(Q- Q'- Q")"· a(Q Q") 
a ( ZJt) t, J 13k , 

X.6(6Ei(Q')6E~<(Q")) + (Z~) 8 ~ dQ' dQ" d~~"' 

X 6(~~- Q'- Q"- Q"')'VJR.Z(Q, Q" + Q"', Q"') 

(1. 8) 

Here Q is the setw, k; dQ = dwdk, 

(1.9) 

(1.10) 

'VJkl(Q, Q', Q") 

iea3na a 1 a 1 afa 
= ~- kv apj w'- k'v apk -;;;,,=-k.ii~ ap;. (1.11) 

When account is taken of the transverse electro­
magnetic field in the expressions (1. 7)-(1.11) we 
get oE- oE + c-1 [ vxoB]. 

In order to obtain an equation for the function 
oE, we make use of the fact that, for example in 
the case of a Coulomb plasma, an equation can be 
obtained from (3) which has the following form for 
the Fourier components: 

( _a~_D_) = -iwbE +abE 
. at ~~ ~q. '"· ,, a~tt 

+ 4:rt ~ ea ~ v6N a dp = 0. 
(1.12) 

Eliminating oNa here by means of (1. 7) and (1. 8), 
we obtain the desired equation. Before writing it 
out, however, we shall consider the following. 

In the solution of the equations for oE or the 
equations for the spectral functions, we shall as­
sume the small quantity to be not the field, but the 
functions Xijk and OijkZ ' 141 which characterize the 
role of the nonlinear interaction. We divide the 
real part of the dielectric permittivity into two 
parts: 

e' = e0 + ~e', 

Here Eo is the linear approximation for E', and 
t::.E' is the change due to the nonlinear interaction. 
We shall assume that 

(1.13) 

Of course, there can be several small parameters. 
This allows us to carry out a further simplification 
of the equations obtained below. 

In the zeroth approximation in Jl, we get Eq . 
(1.4) from (1.12) with account of (1. 7). Its expanded 
form is 

(1.4') 

where Pis the symbol for the principal value. 
The equation of first approximation in Jl can be 

written in the form 

a<m _j_ 86E --A "'E . .o.nnt; iJeO . (1.14) at I Vgr aq - Yeff u + lWu <D aw 

In this equation 

Vgr = - aeo I aF} 
ak aw 

is the group velocity: 

verr <11t, ftq, w, k) = v6;j + rij (1.15) 

is the effective damping decrement. It consists of 
two parts: the ordinary damping decrement 
y = E"(8 E0/8wf1 and an additional decrement (or 
increment) brought about by the dependence of E0 

on the variables Jl t and J-tq. 
The following expression is obtained for rif 

[ a awe;l 1 ( ow a ak a ) 
r ij = iii a;;;- + T 7it aw + 7ft ak 

X owe;j0 - !_ awe;/ - _!_ ( aw !.._ + . ak; _a_) 
aw aq ak 2 \ aq aw aq ak; , 

awe;llf aeo X--- w--
ok j ou) · 

(1.16) 

oJYlZ is the random deviation of the induction vec­
tor, brought about by the nonlinear interaction. It 
can be represented in the form 

6fl.HJ1 = - 1-\ dQ' dQ"b(Q- Q'- Q")6(6E-(~~') 
' (2Jt) t, J J 

X 6E~t(~Y'))Xiik(Q, Q") ( 2~) 8 ~ dQ'dQ"dQ'" 

x 6 (Q- Q'- Q"- Q"') eijhl (Q, Q" + Q"', Q"') 

X 6 [6Ei(Q')6(6Ek(Q")6Ez(Q"') )]. (1.17) 

The tensors Xijk and OijkZ are determined by the 
relations 
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"' 4niea (" 
'Xijk = LJ -- J V('{jka dp, 

w 
a 

"'4niea i a 
8ijkl = LJ -W- J V('(jhl dp. 

a 
( 1.18) 

If we do not take into account the effect of the 
change of tht;: distribution functions fa on the spec­
trum, then r = 0. In this case Eq. (1.14) will 
correspond to the dynamic equation in the work of 
Karpman. il 2] In order to show how important it is 
to take account of f, we shall consider some ex-
amples. ' 

First we note that the derivatives in the expres­
sipn (1.16) are 

iJw / iJt, iJk I iJt, iJw I iJq, iJkj I iJqi. 

How shall we determine them? To this end, we 
turn to Eq. (1.14). With account of (1.6) it is the 
eikonal equation; therefore, all the derivatives 
entering into the expression for r can be found if 
the function ..P(q, t) is known. However, in many 
cases, a knowledge of the function ..P(q, t) itself is 
not obligatory. Actually, two equations follow from 
Eq. (1.4): 

iJe iJe iJw iJe iJki -+---+--=0 
iJq iJw iJq iJki iJq ' 

( 1.19) 

which allow us to find two relations between these 
derivatives. 

We shall consider special cases. 
1. In the absence of spatial dispersion, we find 

from (1.19) 

(1.20) 

2. The values of k are given. From (1.19), we 
find the derivatives o(<;/ot and Bw/Bq. 

3. The frequency w is a constant, the vector k 
depends only on a single variable, for example, x. 
It then follows from (1.19) that 

iJk:x - ael ae 
Tx - - iJx 8k:x • 

(1.21) 

This case has been treated in detail in the litera­
ture (see the review of Rukhadze and Silin [ 15]). 

We now consider examples of the determination 
of r. We begin with the case of a spatially homo­
geneous plasma in which rij = kikjk 2 r. 

A. E 0 -' 1-wi)J..!t)/w 2• From(1.16),wefind 

- r!- iJweO _1_ aw ()2~£0 J I w iJeO 
r - L at aw + 2 at iJw2 iJw 

( 1. 2 2) 

B. In the case of ionic sound, we have 

From (1.22) we find 

,f = _1_~__d ( WLi) 
2 WLi dt a3 • 

(1. 23) 

We represent o E in the form 

6E = I<'>E (Jlt, p,q, w, k) 1 ei<P(!-lt, !lq, w, kJ, (1. 24) 

where I 6E I and cp are the amplitude and phase at 
the given values of w and k. For example B, we 
get the following equation for the amplitudes and 
phases from (1.14) in the linear approximation: 

!-_ IBE I = - WLia3 e"I6E 1- __!!!__ !:._ ( WLi) I6E I 
dt 2 2WLi dt a3 ' 

d<p 
dt = O. (1. 25) 

Similar equations for the example A have the form 

d WL 11 1 dWL dcp 1 

dti6EI = - 2 e I6EI- 2wL dti6EI, dt = 0. (1.25) 

The corresponding adiabatic invariants are the ex­
pressions 

B. WLia-3 I6E 12. (1.26) 

It follows from (1.25) and (1.25') that the phases do 
not change in the linear approximation. 

C. We now consider the case of spatially in­
homogeneous plasma: 

w = ,const, kllx, k = k(x), 

80 = 1 _ WL2~ _ 3rd2 (x)wL4(x) k2• 

w2 w4 

It follows from (1.14) that the following quantity 
enters in the equation for the function o E: 

__£__ = [!__ iJeO + ~ flk iJ2eo J j aeo 
Vgr OX iJk 2 OX iJk2 iJk · 

Using the second expression of (1.21), we get the 
following equations for the amplitude and phase in 
the linear approximation: 

di6EI ( e" ( 1/ wL 2 )-1 
---=- ---+ 2a3 1---

dx iJe' / flk - w2 

dcp/dx = 0, 

where a 2 = 3r~ w i/w 4• It then follows that the ex­

pression (1 - w j_/w 2) 112a 3 1 oEI 2 is adiabatically 
invariant. 
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For constant pressure, when ra wt = const, the 
expression (1- wL/w 2) 112 joEj 2 is adiabatically in­
variant. 

2. STATIONARY AND HOMOGENEOUS CORRE­
LATIONS OF THE ELECTRIC FIELD 

In a stationary and homogeneous case, 

8E(~-tt,~-tq,CD,k) = joE(CD,k)jexp{-i~CDt+i~kq}, (2.1) 

where b.w and b.k are the changes of w and k 
brought about by the nonlinear interaction. We sub­
stitute this expression in Eq. (1.14). From the 
condition of stationarity and homogeneity it follows 
that the vector onnZ has the form 

oDnl (~-tt, ~-tq, CD, k) = oD'nl (CD, k) exp {- i~wt + i~kq}; (2. 2) 

oDnl (w, k) is a complex function. Taking this into 
account, we get from Eq. (1.14) 

conditions should be satisfied: 

~CDa. = ~CD~ + ~CDv + ~CDa, ~ka. = ~k~ + ~kv + ~ka. 
As a result, we get a set of equations for the func­
tions I Ea I (we shall omit the sign of the modulus): 

(~e' (Ra.) + ie" (Ra) )Ea.= -8a~vaE~EvEa. (2.6) 

Summation over repeated Greek indices is not 
carried out. In this equation, 

kO = kj lkl (2.7) 

(the brackets { }pyo denote symmetrization with 

respect to the indices {3yo). 
From (2.6), we obtain a closed set of equations 

for the pair and quadruple correlations: 

(~e' (Ra) + ie" (Ra.)) (EE) a= - 8a.~va (EEEE) a~va, 

(-i~e' + e~ff) joEl= ioDnl (CD, k). 
Here, 

(2.3) (~e'(Ra) + ie"(Qa)) (EEEE)a~v6 

= - 8a~va (EE) ~ (EE) v (EE) a. (2. 8) 
~e' = (~CD- Vgr~k) Oe0 I ow, e" eff = Yeff Oe0 I ow. (2.4) 

If we multiply Eq. (2.3) by joEl and average, 
then we obtain an equation for the spectral function. 
However, this equation will not be closed, because 
of the nonlinearity of the function oDnZ. For an ap­
proximate solution of this set of intermeshing equa­
tions we make use of the following circumstance. 
In the zeroth approximation in JJ., the function 
o E(w, k) differs from zero only for values of w and 
k which are related by Eq. (1.4). On this basis, it 
is natural to seek a solution for the function 
oE(w, k) in the form 

6E(w,k)= ~ o(w-wa)6(k-ka)Ea.; 

~' CDa.=O, ~ ka= 0, (2.5) 
a. a. 

where n is the number of characteristic waves. 
The approximation which is used here consists in 
the fact that the interaction of a small number of 
waves is taken into account. We shall consider 
two special cases: the four-wave and the three­
wave interactions. 

Four-wave interaction will be considered for 
the case of an isotropic plasma when f = fa(P). If 
there is no spatial dispersion, then it follows from 
Eqs. (1.10), and (1.18) that the tensor Xijk is equal 
to zero. The term containing this tensor can be 
neglected also in the case of a weak spatial dis­
persion. Assuming this condition for simplicity, 
we omit the term with Xijk in Eq. (1.17). 

We substitute the expression (2.1) in Eq. (1.14) 
with account of (2 .2). As a result, the following 

The quadruple correlations cannot be broken up 
into pair correlations if all the Q 0 are different. 

Equating the real and imaginary parts, we ob­
tain a set of four equations of which one is the 
consequence of the other three. Solving these 
equations, we find the desired functions: 

(EEEE)a~va =( e"(Ra)e"(Q~)e"(Rv)e"(Qa) r: (2.9) 

ei~v6 e~~6a. e;6a.~ 8~a~v 

8" a""6 8' ""6 (EE)a. =-__ P'-(EEEE)a~va, ~e' = _a_p_, e" (Ra). 

e"(Ra) e~~va (2.10) 

The conditions for which there exists a stationary 
solution that differs from zero are evident from 
these solutions. 

A particular case of the four-wave interaction 
is the two-wave interaction. Only in this case do 
the closed equations for the pair correlations 
follow immediately from Eqs. (2.6). 

We now consider the case of the three-wave 
interaction. We keep the first nonvanishing term 
in the expansion of (1.17). In place of (2.6), we ob­
tain the set of equations 

(2.11) 

Here 

(2.12) 

Using these equations, we obtain a closed set of 
equations for the functions (EE)a, (EEE)apy- The 
solution of this set of equations has the form 



NONLINEAR INTERACTION OF WAVES IN A PLASMA 331 

(2.13) 

(EE)a. = - e;~~a.) (EEE)a.!ly, 

3. NONSTATIONARY EQUATIONS FOR THE 
SPECTRAL FUNCTIONS OF THE FIELD IN A 
SPATIALLY HOMOGENEOUS PLASMA 

The stationary equations in the general case 
are complicated since, in addition to the correla­
tion amplitudes, there also appear phase correla­
tions and mutual correlations of amplitudes and 
phases of the random waves. We consider here the 
special case in which the values of !::>.E' determined 
by Eqs. (2.10) and (2.14) are much smaller than 
E". Then, in first approximation in p., we can dis­
regard the slow change in phase. With this condi­
tion for the four-wave interaction [again we omit 
the term with Xijk in (1.17)] we obtain the following 
set of equations: 

a 
---(EE)a =- 2Veff (Qa) (EE)a- 2Da~vo(EEEE)a~vo, at 

(3.1) 

+ 'Vefl (Qo)) (EEEE)a~vo- {Daflvo(EEh(EE)y(EE)o 

+ Dflvoa(EE)y(EE)o(EE)a + Dvoa.fl (EE)o(EE)a(EE) fl 

+ Doaflv(EE)a.(EE)fl(EE)y}. (3.2) 

The stationary solution of these equations is identi­
cal with (2.9) and (2.10). 

The corresponding equations for the three inter­
acting waves have the form 

:t (EE)a. =- 2Yeff (EE)a- 2I'a.flv(EEE)afly, 

r II I aeo 
aflv = X a.flv awa ; (:3.3) 

X (EEE)aflv- (I'a~v(EE)fl(EE)y + I'flva.(EE)v 

X (EE)a + I'vafl(EE)a.(EE)fl). (3.4) 

Thus a closed equation for the plasmons (pair 
correlations of the field) exists only for two-wave 
interactions. 

4. KINETIC EQUATIONS FOR THE DISTRIBUTION 
FUNCTIONS WITH ACCOUNT OF NONLINEAR 
INTERACTION OF THE WAVES 

If the distribution functions fa are not given, then 
the equation for the spectral functions of the field 
is not closed, since the tensors Eij, Xijk· and Bijkl 
depend on the functions fa. 

In the case of three-wave interaction, a closed 
set of equations is obtained for the functions fa, 
(EE)a, (EEE)a,By• in the case of four-wave inter­
action--for the functions fa, (EE)a, (EEEE)a,Byo 
etc. [s]. 

From the results in these sets of equations, 
there follow the laws of conservation of the num­
ber of particles, of the total energy of the parti­
cles, and of the total momentum. For example, the 
law of conservation of energy can be written in the 
form 

For the values of wa and ka, for which the 
time of establishing the spectral functions of the 
wave is much shorter than the time of establishing 
the distribution function fa, one can use the quasi­
stationary solution of Eqs. (3.1)-(3.4). They differ 
from the solutions (2.9), (2.10), (2.13), and (2.14) 
by replacing E" with E~ff· Eliminating the spectral 
functions, we obtain a closed set of equations for 
the distribution functions fa with account of the non­
linear interaction of the plasma waves. 

Like the collision integral J~0l, the integral J~, 
which takes into account the contribution of the 
waves, possesses the properties 

~ 1~ CJla(P)laidp = 0 for CJla(P) = 1, p, p2/2ma. 
II 

This means that the total momentum of the parti­
cles and the total kinetic energy are conserved in 
the quasistationary approximation for the field . 

. At the same time, the structure of the integral 
J~ is quite different when account is taken of non­
linear interaction. The collision integral is pro­
portional to the fourth power of the charge while 
the integral J~ does not depend explicitly on the 
charge. The dependence on the charge enters in 
only implicitly through the value of the roots of 
Eq. (1.4). Actually, it follows from (2.9), (2.10), 
(2.13), (2.14) and from the expressions for the ten­
sors Eij, Xijk• and eijkl that, in the quasistationary 
case, 



332 Yu. L. KLIMONTOVICH 

Upon elimination of the spectral functions the 
value of the charge for e+ = I e I does not enter 
explicitly into the expression for J~. As a conse­
quence, the relaxation time of the function fa does 
not depend explicitly on the charge; therefore, the 
smallness of the relaxation time can be attributed 
only to the small number of charged particles 
which effectively interact with the plasma waves. 

In a similar way, one can obtain the correspond­
ing equations of quasi-linear approximation for the 
set of equations of Vlasov. 
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