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Conditions for the appearance of a nuclear exciton in a crystal consisting of excited and un
excited nuclei of a given type are determined. The total probabilities for spontaneous y-emis
sion by a single excited nucleus or by an arbitrary number of excited nuclei in the crystal are 
derived. It is shown that the formation of a nuclear exciton is conne~ted with an increase of 
the width of the emitting level and with the concentration of the radiation in a narrow solid angle. 

INTRODUCTION 

THE main properties of spontaneous emission of 
excited nuclei are well known. The angular dis
tribution of the y quanta radiated by a free unpolar
ized nucleus is isotropic. The lifetimes have been 
measured for a large number of low-lying exciting 
states of the nuclei. As a rule, the lifetime of 
nuclei situated in a medium differs little from the 
lifetime of free nuclei. Nonetheless, it seems to us 
that in principle there exists a possibility for the 
occurrence of an effect connected with the apprec
iable change in the lifetime of nuclei placed in a 
crystal. Such a possibility is realized only if cer
tain necessary conditions are satisfied. 

It is necessary first that the excited nuclei be 
placed in a crystal consisting of nuclei of the same 
sort in the ground state. In this case they quantum 
emitted by a single nucleus without recoil (Moss
bauer effect) can be absorbed by another nucleus 
of the same sort. Therefore, in principle, the ex
citation becomes capable of propagating through 
the entire crystal (nuclear exciton). The wave
length of nuclear radiation in the energy range of 
interest to us 'k « a-crystal lattice constant. 
Therefore, the intensity of the radiation field in 
all the lattice sites that are closest to the radiating 
nucleus decreases like {lt/ a 2). It follows hence 
that although a nuclear exciton is possible in prin
ciple, this possibility is not realized in practice 
under usual conditions. 

The situation is changed if all the nuclei are in 
phase, which, as will be shown below, corresponds 
to the condition K = 27Tb, where b-reciprocal 
lattice vector and K-wave vector of the radiation. 
In this case the propagation of the radiation occurs 
in the direction of b, i.e., it becomes one-dimen
sional. In one-dimensional propagation, the exci
tation intensity remains practically unattenuated 

over a distance ~ a, and consequently, creation of 
a nuclear exciton becomes possible. Of course, 
the nuclear exciton can exist only if the lifetime of 
the excited nucleus is not too small, namely 
T > a/c ~ 10-18 sec. This criterion is satisfied in 
all known cases. 

In the present paper we study the conditions 
which must be satisfied for a nuclear exciton to 
exist. We obtain the y-quantum radiation width for 
a crystal in which a nuclear exciton propagates. 

1. RADIATION OF A NUCLEUS IN A CRYSTAL 

We consider the condition for the occurrence of 
a nuclear exciton in the case of one excited nucleus 
placed in an ideal single crystal consisting of 
nuclei of the same sort. We assume that the 
Mossbauer conditions are satisfied. Calculation 
of the probability of the radiation of the nucleus in 
the crystal is best carried out by a method devel
oped by Heitler[i]. Let bKA,(t) be the amplitude of 
the probability of emission of a quantum with wave 
vector K, frequency WK, and polarization A., and 
let b1 (rjt) be the amplitude of the probability of 
finding an excited nucleus at the site j at the instant 
of time t. As follows from [t], these amplitudes 
are connected by the following equations (ti = c = 1) 

ibK"J... (t) = HK"J... ei(O>o-"'K) I~ eiKr;bl (r;t), 
i 

'b. ( ·t} - "" H • -i(O>o--<o>K) I b (t) e-IKr;. 
l1~ -~ K~ n , 

K"J... 

b1 (0, 0} = 1, b1 (r;, 0} = 0, r; =I= 0; bKA(O) = 0, (1) 

where Hk = hKA. e-W/2; hKA. are the matrix ele
ments for the radiation of a free nucleus, e-W/2 
is the Moss bauer factor [2], and the ri are meas
ured from the location of the excited nucleus. 

The case of practical interest is when Ka » 1. 
We shall henceforth consider a crystal with cubic 
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symmetry. Generalization to the case of a crystal 
with arbitrary symmetry entails no difficulty. 

It can be verified that for arbitrary K and for 
nuclei that are close to the excited nucleus the 
amplitude b1 (rit) is small like (Ka)-1 « 1. Indeed, 
let us rewrite (1) in the form 

ibK"A. (t) = HK"A. i<"'•_,Kl t [b1 {0, t) + ~ eiKrj b1 (rit)] 
j,eo ' 

In the case of arbitrary K the system (1') can be 
solved by iteration. As a result we obtain 

(2) 

From (2) we see that the total radiation width 
rR is of the form 

i.e., in the case of arbitrary K and Ka » 1 the 
quantity rR differs little from YR• the radiation 
width for the free nucleus. 

(3) 

The situation changes noticeably when K = 21rb, 
where b is the reciprocal lattice vector. In this 
case, as can be seen from (1), the amplitudes 
b1(rit) do not depend on ri. Let us write the second 
equation of (1) in the form 

ib (t) = ~ H;_"A. e-i {"'o-"'Kl t bK>. (t) ~ e-iKri; 
K>. i 

b (t) = ~ b1 (rtt), b (0) = 1. 
i 

(4) 

-rRt/2 
We seek b = e . Inasmuch as b1 (rit) does 

not depend on ri when the following condition is 
satisfied 

K=2:n:b, 

we get 

~ ei Kr; b1 (rit) = b(t) ~ ~ eiKr;. 
J J 

Solving (1) with account of (4)-(6), we obtain 

(5) 

(6) 

sion of the y quanta, then the total lifetime of the 
nucleus in the crystal is T = 1/rtot• where rtot 
= Yc + rR, and YC is the conversion width. 

As in the theory of x-ray diffraction, we can 
show that rR- N1/ 3[ 3]. From (8) we see also that 
radiation in the direction of K has the following 
probability per unit time: 

dw 'VR 1 ~ . -- = -e-w -I e•K•JI2. 
dQ 4n N. 

K J 
(9) 

If condition (5) is satisfied exactly, expression (9) 
becomes 

dw 'VR 
--=-e-WN 
dQ 4n 

(10) 

Comparing (8) and (10) we see that the intensity 
of y-quantum emission lies in a narrow solid angle 
6.8 - 1/N213 near the direction of b. 

The probability of emission of the y quantum by 
the entire crystal is larger than the probability of 

emission by a free nucleus by a factor - e- W N1/ 3 

This effect is connected with the collectivization 
of the nuclear excitation in the crystal when the 
resonance condition (5) is satisfied. In other 
words, the lifetime of an excited nucleus placed 
in a crystal consisting of like nuclei will de
crease when the conditions necessary for the 
production of a nuclear exciton are satisfied. Of 
course, the decrease in the lifetime of the excited 
nucleus will be appreciable only in the case when 
rR;:::, YC· 

Formally (10) contains the total number of 
nuclei in the crystal. In fact, however, owing to the 
extinction phenomenon, which is well known in x-ray 
physics [4], the number N of nuclei is limited. As 
a result, the effective number of nuclei Neff will be 
- (lext) 3 n, where lext is the extinction length and 
n the density of nuclei in the crystal. 

We have considered above the radiation from a 
single nucleus placed in a crystal. Of practical 
interest is the case when the number of nuclei is 
arbitrary. 

rR = 2n L PJ..(Wo) ~ dQK IH.KA [21 ~ eiKr;l~~' (7) 2. RADIATION IN THE CASE OF AN ARBITRARY 
" i NUMBER OF EXCITED NUCLEI 

where PI\. (w 0)dS1K is the density of the final states 
of the emitted y quantum with polarization 71.. The 
quantity rR has the meaning of the width of the 
y-quantum radiation of the entire cyrstal. If the 
nuclei are not polarized, then 

rR = 'VR e-W -~ ~ dQK I~ eiKr ;12. (8) 
4n N J 

If conversion takes place in addition to the emis-

Let the number of excited nuclei in the crystal 
be arbitrary. We take into consideration the fact 
that an arbitrary excited nucleus interacts with an 
unexcited nucleus because the excited nucleus 
emits a y quantum, while the unexcited nucleus 
absorbs the y quantum (y-quantum exchange). Then 
the Hamiltonian of the system can be represented 
in the following form [S] (we neglect conversion) 
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H = Ho+Hint 

H _ wo ""' ( + _ + ) 
0 - 2 LJ ai+'f, a i+'lz a i-'1, ai-1/z , 

i 

Hint= -} ~ ~ IHKI. 1
2(wK + w!- ir/2 -- wK _;o+ iyj2) 

X [exp(iK(r;- rJ) )a;+'!, aj+'lz aJ-'/, ai-'h +c.c.], (11) 

where at+ 112 is the operator for the creation of an 
excited nucleus in the site j, aj _ 112 is the operator 

for the creation of an unexcited nucleus, and Hint 
the operator of interaction between the excited and 
the unexcited nuclei via y-quantum exchange. 

Inasmuch as it is impossible to create excited 
and unexcited nuclei in a simultaneously single site, 
the operators a: a. (v = ± 1/2) should be of the 

. ThJV JV d" . 1 Ferm1 type. e correspon mg commutat10n re a-
tions are 

(12) 

The Hamiltonian (11) can be rewritten, using 
(12), in the form 

1"' . + + . H = H 0 - y ~ B (r;- rJ) ai+'f, aJ-'1, ai+'f, ai-'f•, 
1) 

B ( ) 2 'V I H 12 !K (r· -r ·) r;-rJ = LJ Kl. e ' 1 · 

Kl. 

x ( wK+~-ir/2- wK-w~+ir/2)· (13) 

We diagonalize the Hamiltonian (13) by means of 
the Bogolyubov canonical transformation [G]. We 
introduce the Fermi amplitudes O'j and /3j. The ini
tial amplitudes are expressed in terms of aj and 
f3j with the aid of the linear relations 

where u and v are coefficients satisfying the nor
malization condition u 2 + v 2 = 1. The operator N 
of the total number of nuclei is expressed in terms 
of the new amplitudes with the aid of the relations 

N = N + ~ Uj+Uj-~ ~j+~j- (15) 

It is also easy to verify that the operators H0 

and Hint take the form 

}]0 = _w_l<(v2- u2)N- w\v2 - u2) ~ (a/ai + ~/~J) 
2 2 

+ UVWo ~ ( Uj+~j+ + ~jUj), 

H = - ~ ""'B (r·- r·)[u2v2- 2u2v2 (a·"~-a· + R .+R ·}- uzvz mt 2 ~ . 1 J J J t'J t'J 

2) 

- ~;+aJ+aJ~i- a;+~i+~Ja;) + u4a;+ai~/-~; 

+ v4 ~;+~JaJ+a;] + 11'. (16) 

In H' are gathered all the terms which contain 
three creation operators and one annihilation opera
tor, or vice versa. 

The ground state I 0) of the system (vacuum) is 
determined by the condition 

(I 7) 

The energy of the ground state of the system is 
obtained by using (16) and (17): 

Eo= <OIHIO> = ~o (vz- u2)N- {- u2vz~ B(r;- rJ). 

ij (18) 

The coefficients u and v are determined from 
the relation 

< 0 I ~ (a~+'!, a J+'!,- aj_,1, aJ-'f, ) I 0) 
j 

(19) 

using the condition u 2 + v 2 1, where n+ and n_ 
are the numbers of excited and unexcited nuclei in 
the crystal, respectively. As a result we have 

(20) 

The result (20) is perfectly obvious, since v 2 

corresponds to the probability of the presence of 
excitation in the given site, and u 2 yields the proba
bility of absence of excitation. 

We represent the ground state energy (18) in the 
form 

rn 
Eo= Eo<1>- i-2 , 

0) 1 ("' \ E~1l = T (v 2 - u2) N-T u2 v2 Re ~ 11 (r;- I"J)} , 

rR = Im (u2v2 ~B(r;- l"j}) 
ij 

1) 

where rR has the meaning of the radiation width 
for the entire crystal. If the nuclei are not polar
ized, then 

r rR -W 1 cdQ I"' !Kr·/2 (21) 
R =-;;;-- n+n_e N 2 J K ~ e J • 

f:-t J 

It is also obvious that if condition (5) is exactly 
satisfied the probability of emission in the direc
tion of K is 

(22) 

Formulas (21) and (22) agree with the results of 
the preceding section. Indeed, when n+ « n_, the 
radiation probability of the entire crystal can be 
obtained by simple multiplication of (10) by n+. In 
the same manner as in the preceding section, we 
verify that 
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(23) 

The expressions obtained are symmetrical with 
respect ton+ and n_. The maximum radiation in
tensity should be observed when n+ ~ n_ ~ N; in this 
case 

rR ~ 'VRe-WN'Is I 4n. 

In the other case, when n+ or n_ are small, 

rR ~ 'VRe-WN'I· I 4n. 

(24) 

(25) 

In the preceding analysis we disregard absorp
tion of the y quanta (extinction). The effective num
ber of unexcited nuclei, which can participate in 
the coherent radiation is Neff~ Uext/a) 3 • We can 
estimate Zext roughly, using the formulas given 
in C7J: 

• 2 w ~ Wo 2 (!_)3 
n-~x ~1 = (w~wo)2+(f/2)2 nyR a ' 

f=rR+rc, (26) 

where n is the refractive index, and K the extinc
tion coefficient, which is connected with Zext by the 
relation Zext = 71::/ K. 

We are interested in the case when 71:/a « 1; 
then we have for w ~ w 0 

(27) 

and consequently 

Neff ~ [ (r I 2:nvR) (a I 1; )2)3. ( 2 8) 

If r IYR = 1 +a (a -conversion coefficient 
~ 10-10 2), 7t: = 0.5 x 10-9 em, and a= 2 x 10-8 em, 
then 

Neff ~ 1010 - 1013• (29) 

Accordingly, in all the preceding formulas we 
must substitute Neff in place of N. In particular, 
the estimate (25) will take the form 

(30) 

Thus, for real values of the parameters the 
total width for the radiation by the entire crystal 
can become much greater than the width for the 
isolated nucleus (coherent broadening). 

CONCLUSION 

It is seen from the foregoing analysis that in 
the case when a nuclear exciton is produced the 
main characteristics of the spontaneous emission 

change noticeably: a) angular anisotropy appears, 
the y-quantum flux is concentrated in the b direc
tion, and the probability of emission in this direc
tion is ~ N~ff; b) the total width for radiatio~ by 
the entire crystal becomes longer than the width of 
the isolated nucleus by a factor ~ e- WNfiif· 

Thus, if the conditions for the realization of a 
nuclear exciton are satisfied then: 1) sharply 
directed beams of monochromatic y quanta can be 
obtained; 2) the lifetimes of the nuclear isomers 
can be appreciably reduced when these isomers 
are placed in a crystal consisting of unexcited 
nuclei of the same sort. 

To check on the possibility of existence of a 
nuclear exciton, it is necessary to vary the lattice 
constant in any one of the crystallographic direc
tions until the condition K = 27rb is satisfied. The 
nuclear exciton can be observed from the resultant 
angular anisotropy of the y quanta, or from the 
broadening of the Mossbauer emission line. The 
lattice constant can be changed by applying pressure 
or by varying the temperature. 

In conclusion we are grateful to F. L. Shapiro 
for valuable remarks, and also to V. K. 
Voltovetskil and S. M. Feinberg for discussions. 

1w. Heitler, The Quantum Theory of Radiation, 
Oxford, 1954. 

2 Yu. Kagan, Effekt Messbauera (The Moss bauer 
Effect), IlL, 1962, p. 5. 

3 L. D. Landau and E. M. Lifshitz, Elektrodinam
ika sploshnykh sred (Electrodynamics of Continuous 
Media), Fizmatgiz, 1959, p. 510. 

4 R. W. James. Optical Principles of the Diffrac
tion of X-rays, Bell, London, 1948 (Russ. Transl. 
IIL, 1950, p. 210). 

5 A. I. Akhiezer and V. B. Berestetskil, Kvan
tovaya elektrodinamika (Quantum Electrodynamics), 
2d Ed. Fizmatgiz, 1959, p. 407. 

6N. N. Bogolyubov and S. V. Tyablikov, JETP 
19, 256 (1949). 

7 A. S. Davydov, Kvantovaya mekhanika (Quan
tum Mechanics), Fizmatgiz, 1963, p. 360. 

Translated by J. G. Adashko 
49 


