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The problem treated is that of the propagation of a transverse wave of large amplitude in a 
two-level system. A nonlinear dispersion equation for such waves is derived and studied. It 
is shown that under certain conditions the transverse wave is unstable with respect to para
metric excitation of a longitudinal wave with the same phase velocity. The problem of exci
tation of a two-level system by an electron beam is studied. It is shown that if the condition 
for the anomalous Doppler effect is satisfied, the system can be transformed to the inverted 
state. Coupled nonstationary longitudinal-transverse oscillations, in the system composed 
of the beam and the active medium, are treated. 

1. As is known, appreciable electromagnetic field 
intensities are now obtained in the optical frequency 
range by means of coherent sources. At such field 
intensities, nonlinear effects of the interaction of 
the field with the material are important. Some of 
these effects have been discussed by a number of 
authors. [l-4.] 

In the present work we consider the problem of 
the effect of these nonlinearities on the propagation 
of electromagnetic waves in the medium, and also 
the possibility of excitation of nonlinear electro
magnetic oscillations in the medium by a beam of 
charged particles. Nonlinear effects show up es
pecially strongly near a resonance, when the fre
quency of the wave is close to one of the charac
teristic frequencies of the molecules of the me
dium. Under these conditions, the most important 
nonlinear effect is the change of populations of the 
levels under the influence of the field of the wave. 
The influence of this effect on the propagation and 
excitation properties of electromagnetic waves can 
be treated by using, as a model of the medium, a 
system with two energy levels, E2 - E 1 = nrl. 

The problem under consideration reduces to the 
solution of Maxwell's equations jointly with the 
nonlinear equations that describe the properties 
of the medium:C3J 

aH 
curl E =- -a,, 

aw aP 
-=E-· a, a,· 

aE ap 
curlH=-+4:rt-. a, a, 

(1) 

(2) 

Here q = 2d2N/nrl; the polarization vector P and 
the field vectors E and H are expressed in units 
Nd (d is the dipole moment of a molecule, and N 
is the density of active molecules); W is the den
sity of the energy stored in molecules of the active 
material (inunits N2d2 ); and rl= (E2 -E1 )/n. 

We shall seek solutions of these equations de
pendent only on one coordinate, ~ = rlz/c, which• 
coincides with the direction of propagation of the 
wave. In the general case, the nonlinear longitudi
nal and transverse waves in such a medium are 
coupled, since the difference of populations of the 
levels, qW, is determined by both components of 
the vector polarization: 

qW = (1- p2_ P2)'''· (3) 

The effects of interaction of longitudinal and 
transverse waves will be treated below. In the 
present section we limit ourselves to the investi
gation of purely transverse waves. For such 
waves, the relation between the electric field am
plitude and the polarization vector can be found 
from Maxwell's equations: 

H.dTJ) = -f!P..L(TJ); 

Upon substituting (3) and (4) into (1), we get the 
equation for the polarization P 1: 

(4) 

P.L +P.L = q!l(i-P..L2_p..L2)'/,p..L (5) 

(here dots indicate partial derivatives with respect 
to time T ). 

A first integral of Eq. (5) has the form 
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(1- P .1.2 - P .1.2)'" = q(C - 1/2!lP .1.2), (6) comparable with the amplitude of the transverse 

where C = W ( 0) + 1'2 ttPi ( o). we suppose that the wave· Since the longitudinal wave thus amplified 
constant C does not depend on the coordinate ~. has the same phase velocity as the transverse 

In a first approximation with respect to the pa- wave, the effect treated above can be used for ac-
rameter q, which is practically always small in celeration of charged particles. 
comparison with unity, the dispersion relation can 2. For coherent generation of light waves, it is 
be investigated by use of Eq. (5). On substituting necessary to insure an inversion of the populations 
into Eq. (5) the value p1 = a1 cos 11 and keeping of the levels. Here we treat the problem of exci-
terms of the first order of smallness in q and in tation of an active medium by means of an electron 
w -1, we find beam. We shall take into account the effects of 

collective interaction of the beam with the active 
(7) medium, neglecting effects of collisions of pairs. 

For ai « 1, this equation goes over to a linear 
dispersion equation (( 1-ai )1/l Rl -1 ). Thus with 
increase of the amplitude a1, the influence of the 
medium on the propagation of the transverse wave 
decreases; in other words, increase of amplitude 
of the vector polarization is equivalent to decrease 
of the density of active material. 

However, this equation is inapplicable in strong 
fields, when 1 - ai - 0, for in the derivation of 
this equation we neglected the quantity w - 1 in 
comparison with 1 -a i in the radical on the right 
side of (7). In this case, however, the effect of 
nonlinearity is considerably smaller, because the 
number of particles interacting with the field de
creases. 

We now consider the effects of interaction of 
transverse waves with longitudinal. The presence 
of a transverse wave of large amplitude leads to 
the result that the difference of populations of the 
levels is modulated at twice the frequency of the 
transverse wave. Under definite conditions, such 
modulation can lead to parametric excitation of a 
longitudinal wave. In fact, Eq. (1) for small oscil
lations of the longitudinal polarization vector can be 
be written in the form (if Pf1 + :Pf1 « Pi + :Pi ) 

Pu + QIN1 + hcos 2(u:rt- k;) ]P11 = 0, 

Qu2 = 1 - 4nq2C + q2nJ.taJ..2, h = nq2!laJ..2. (8) 

The solution of this equation for h « 1 has the 
form 

Pu (t, ;) = au (O) e•~ cos ( u:rt - k;), 

where s 2 =h2/4-4(w-QII)2• When lhl 
> 41 w- Qll I, the amplitude of the longitudinal os
cillations increases exponentially with increase of 
T. The large1:1t logarithmic increment s will occur 
when w = Qll; then the increment is equal to smax 
= h/2. For a1 ~ 1, Q Rl 3 x 1015 sec-1 N ~ 5 

19 3 ' x 10 em-, and Jl ~ 41!", the value of s Rl 2 
x 10-5. max 

The growth of the amplitude of the longitudinal 
wave will continue until this amplitude becomes 

We shall suppose that the energy density in the 
beam is large enough so that the energy expended 
by the beam in excitation of oscillations is large 
in comparison with the density of the energy that 
can be stored in molecules of the medium: ymn0v~ 
» Ntm ( n0 is the density of the beam, v 0 is the 
velocity of the beam, and y is the increment of 
growth of the oscillations [ 5]). In this case it is 
sufficient to take account of oscillations in the 
beam in the linear approximation. 

Since we are interested in nonstationary proc
esses in the system composed of the beam and the 
active medium, we shall seek a solution of Eqs. (1) 
and (2) and also of the linearized equations of mo
tion of the beam, in the form of waves with ampli-
tude and phase varying slowly with time: 

Pu(-r, s} = au(-r} cos (w-r- ku~o; + :fru). 

We express E 11 in terms of P 11 , from Maxwell's 
equations and the equations of motion for the beam: 

" 
Eu(-r, s) =- 4nPu(-r, s) + 4nwo) sin[w0 (-r- -.:')] 

0 

X Pu [-.:', ; - ~o(-.:- -.:')]d-.:' 

( Wo = ( 41l"noe2 /mQ2 )112 is the plasma frequency of 
the beam). On substituting this result in Eq. (1), 
we get the following first-order equations for a11 
and J.ll= 

dau . --- r 
d.T =-Sign Wo·nqwo 1'1- au2 J au(-r')d-r', (9) 

d:ttu . ---a;-=- sign Wo·2nq)'1- a112. (10) 

In the derivation of (9) and (10), the following 
conditions were assumed to be satisfied: 

q ~ wo, (o) - 1 = 1 - ku~o + Wo = 0. 

The last requirement coincides with the condition 
fo~ the anomalous Doppler effect (vph = w/k < v0 ). 

It 1s easy to see that when sign W0 = -1 (a ma
jority of the molecules at the initial moment are 
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in the lower level), growth of amplitude of the lon
gitudinal oscillations occurs. Then in the small
amplitude range (af1 « 1 ), the growth is of expo
nential character, with an increment y = ( 1rqw0 ) 112 

determined by the linear theory. 
For treatment of large amplitudes, it is conven

ient to introduce the substitution all = sin cp. Then 
Eq. (9) takes the following form: 

d2<p f dt"2 - •l sin <p = 0. (11) 

This is a known equation, which determines the 
oscillations of a nonlinear pendulum with the equi
librium position at the topmost point. Thus in the 
system under consideration, there takes place a 
periodically recurring transfer of the energy of 
the longitudinal oscillations of the field into inter
nal energy of the matter. An important fact is that 
the difference of populations of the levels, qW 
=-cos cp(T) (cos cp(O) > 0), can as a result of 
this process assume positive values. The time 
that the system remains in the inverted state dur
ing each period of the oscillations is, in order of 
magnitude, T "' y-1; the period of the oscillations 
increases logarithmically with decrease of the ini
tial amplitude of the oscillations. 

It should be mentioned that the relations ob
tained in this section are valid when there is neg
ligible thermal spread of the electrons of the beam 
with respect to velocity. In the case of the anoma
lous Doppler effect, which we have considered, this 
condition is satisfied if I w - k11.Bo I = wo » k11.BT• 
where c.BT = VT is the thermal velocity of the 
electrons of the beam. The last inequality, and 
also the condition for negligibility of nonlinear ef
fects in the equations of motion of the beam 
(m2v~d2 wV.! » 47T1f2n2e 2q112 ), can be satisfied, evi
dently, only in the microwave region. 

We now consider the problem of the develop
ment, with time, of small fluctuations of the trans
verse field in the system under consideration 
(beam and active medium). For small transverse 
oscillations it may be supposed that the internal 
energy of the medium changes with time according 
to the law (11) determined by purely longitudinal 
oscillations. 

As in the case of longitudinal oscillations, we 
shall seek a solution for the field E1 and the po
larization P1 in the form of a wave with slowly 
varying amplitude and phase: 

P.L(l", s) =a.L(T)cos(wT-k.Ls+tl-.L). 

Then the relation between E 1 and P 1, in accord
ance with Maxwell's equations, has the form 

E1. (T, s) =- 4nP .L {T, s) 

'( 

+ 4nk.L~ sin[k.L(T- 't')]P .L(T',s)dt"'. 
0 

(12) 

On substituting into (1) the value of E 1 from (8) 
and qW = -cos cp, we get the following equation 
for the amplitude of the transverse oscillations 
when w0 « 1: 

d '( 
~ = -nq cos [<p(T)] ~ a.L (T')dt"'. (13) 
dt" 0 

From Eq. (13) it is clear that the amplitude of 
the transverse field begins to grow only upon tran
sition of the system to the inverted state (cos cp 
< 0). Since cp ( T) changes appreciably over a time 
of order (7rqw0 )-1f2 » (7rq)-112, a solution of Eq. 
(13) can be found by the WKB method: 

I cos <p('t") ,.,, 
a.L('t") = a.L(l"o) ----

cos <p (To) 

xexp { s [nq cos ljl (t"') ]'i• dt"l}. 
To 

This expression is valid up to To's for which 

(14) 

cos cp (To) < 0 and w0 « I cos cp (To) 1. The increase 
of amplitude of the transverse oscillations will 
continue until the transverse wave begins to have 
an appreciable influence on the populations of the 
levels, that is until a time T m determined by the 
condition Ieos cp(Tm)l ~ a1(rm>· 

Study of the equations of coupled longitudinal
transverse oscillations of the system shows that 
the system cannot be in a state in which the popula
tion of the levels or the direction of the polariza
tion vector does not change with time. This con
clusion is easily reached by studying the small 
oscillations in the system 

d a11 

d:.C-(1- au2- a.L 2)''' = n:qwoau; 

d t:i.L -- = - nqa.L (15) 
dt" (1-all2-al.2)''' . 

By means of the substitution a 1 = sin cp sin J., 
a11 = sin cp cos J. it can be shown that the frequen
cies of small oscillations about the equilibrium 
position cp = cp 0 and J. = J.0 are w~ = cos cp 0, w~ 
= - w0 cos cp 0• Thus the small oscillations are 
always unstable. 

It is easily seen that in the absence of the beam, 
the amplitude of longitudinal oscillations a11 re
mains constant, but the amplitude of transverse 
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oscillations changes according to the law of non
linear oscillations of a pendulum. In fact, upon 
introducing into (15) the substitution a1 =sin 1/J 

and supposing that a 11 ( 0) = 0, we get the follow
ing equation for 1/J: 

d2¢ / d;;2 - sign W 0 • nq sin \jJ = 0. (16) 

In the case in which sign W0 = -1 (a majority of 
the particles are in the lower level), Eq. (16) de
scribes a nonlinear pendulum with the equilibrium 
position at the bottom point. If sin 1/J ..... 1/J (linear 
oscillations ) , then a 1 ( T) is modulated with fre
quency (7rq)1f2• When sign W0 = +1 (a majority 
of the particles, at the initial moment, are in the 
upper level), (16) becomes the equation of oscil
lations of a pendulum with the equilibrium point 
at the top position. 
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