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The problem treated is that of the relaxation of the nondiagonal density matrix of excited 
atoms in a gas owing to collisions with normal atoms. The relaxation term is diagonalized 
by means of a change to a new representation. The diagonal elements y 1 and y 2 have the 
simple physical meaning of the respective inverse relaxation times of circular and plane 
polarization. The numerical values of y 1 and y 2 are obtained for the most interesting 
case, that in which the respective total angular momenta of the ground and excited states 
are zero and unity. 

IN a collision of an excited atom with a normal 
atom of the same element a possible process is 
resonance transfer of the excitation. For anal­
lowed transition the cross section for such a col­
lision is much larger than the gas-kinetic cross 
section. Vlasov and Fursov, [t] studying the effect 
of this process on the width of the spectral line, 
showed that the cross section is of the order of 
A.2y/ .6.w, where A. is the wavelength of the transi­
tion, y is the natural width of the excited level, 
and .6.w is the Doppler width of the spectral line. 
In collisions of this kind there is a redistribution 
of the populations of the Zeeman sublevels (which 
can also occur without transfer of the excitation). 
This manifests itself, for example, in the phenom­
enon of depolarization of the scattered light owing 
to collisions. Furthermore, if the excited atom 
was in a coherent mixture of states (so that the 
elements of the density matrix that are nondiagonal 
in the Zeeman sublevels were different from zero), 
the coherence can be partially destroyed as a re­
sult of the collision (relaxation of coherence ) . 

The nondiagonal elements of the density matrix 
are responsible for a number of resonance effects 
that appear when light is scattered by a gas in a 
magnetic field. [2- 5] The line widths of the corre­
sponding resonances are determined at low pres­
sures by the natural lifetime y-1 of the excited 
state. When the pressure is increased the reso­
nance lines first become narrower owing to cap­
ture of radiation, [S] and then are broadened 
because of the collisions mentioned above. The 
collisions must become important when the pres­
sure is so large that the condition n/1..3 « 1 no 
longer holds, where n is the concentration of 
normal atoms. Thus there is a need to investi­
gate the relaxation of the nondiagonal density 

matrix (the coherence) of an excited atom in col­
lisions with normal atoms. 

We have dealt previously C7J with the problem of 
the relaxation of coherence owing to the capture of 
radiation. It was found that the relaxation terms 
in the equation for the density matrix fmm' are of 
rather complicated form. It is possible, however, 
to change to a representation in which there are 
only two relaxation times Y11 and Y21• The first 
of these is the decay time of circular polarization, 
and the second is that for plane polarization. 

In the present paper it will be shown that there 
is an analogous situation for the relaxation of co­
herence owing to collisions. The calculation of the 
times Y11 ·and Yi1 is carried to a conclusion for 
the case in which the total angular momentum of 
the excited state is h = 0 [Eq. (30)]. This case 
occurs in the scattering of light by vapors of even 
isotopes of cadmium or mercury. 

As is the usual practice in discussing the colli­
sions of heavy particles, we shall treat the trans­
lational motion of the atoms classically. Before 
the collision (at t = - oo ) let atom A be excited 
and have the density matrix fmm'• and let atom B 
be in the normal state with the density matrix 
(2jo + 1)-toJ-1-J-1-'· 

The indices m and m' number the Zeeman 
sublevels of the excited state (total angular mo­
mentum h), and J-1- and J-1-' the sublevels of the 
ground state (total angular momentum j 0 ). We 
denote by f~rh' the part of the density matrix of 
atom A that corresponds to its excited state after 
the collision. We call the corresponding quantity 
for atom B f~rh'· It is obvious that the matrices 

f~rh' and f~b' are related linearly to fmm': 

j~J,. = 2], B'::.~',fm,mt' . (1) 
m1m1 
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The coefficients A and B depend on the impact 
parameter p and the relative velocity v of the 
atoms (the vectors p and v are of course perpen­
dicular to each other ) . 

The change of the density matrix of the excited 
atoms in one collision is obviously 

f,A) f,B) 
11f.rnm' = fmm/......,.... mm'- mm'· (2) 

The increment of the density matrix per unit time, 
referred to one excited atom, is 

&fmm' ~ --=- n Mmm'pdpv3dv<D(v)dQ, 
fJt 

dQ =sin 8d8dcpd'ljJ, (3) 

where n is the concentration of normal atoms, () 
and rp are the polar angles of the vector v, 1/J is 
the azimuthal angle of the vector p in a plane per­
pendicular to v, and q, ( v ) is the distribution of 
relative velocities, normalized to unity (a Maxwell 
distribution with the mass M/2, where M is the 
mass of an atom). The integration over angles in 
(3) can be performed in the following way. 

In the equations (1) we go over to a system of 
coordinates connected rigidly to p and v. Then 
the equations (1) take the form 

The quantities A and B are connected with the 
quantities A and B by the relations 

A;;::;t•' = ~ D",j,~ (Q) Dt:.'r' (Q) Dt;.,. (Q) n;j,:; •. (Q) A~~·, 
rr'ss' 

B:;::;t•' = ~ D",j,l (Q) Dt;.'r' (Q) Dt:.,. (Q) n",j,:'s' (Q) B~~·. (5) 
rr'ss' 

The matrices A and B are of course independent 
of the angles S1. Here D~m' ( St) is the matrix 
for a finite rotation. [8] 

The integral of the four matrices D can be cal­
culated by expanding the product of two D matrices 
in a Clebsch-Gordan series and using the orthogo­
nality property. After the integration over the 
angles we get finally 

ofmm' 'V rm,m(/ 
~ ==:;- ~ mm' »t1m 1', 

m1m1' 

(6) 

X (f1 l1 f) (/1 l1 j) Lss: 
I 1 I I TT ' r-rp s-sp 

(7) 

(8) 

We expand the density matrix fmm' in terms of 
irreducible tensor operators [8, 7]: 

2il 'X 

f= '2.; ~}-q><Jq><(-i)q. 
X=O q=-X 

Here the operators Tq are normalized so that 

(T ><) · , _ 2x + 1 _ i j,-m' ( h X h) 
qmm-(2h+1)'J) -mqm'" 

(9) 

(10) 

Furthermore, owing to the orthogonality property 
of the 3j symbols 

2" +1 
/ x=(-i)q h "V(T ") / q 2X -I- i L.. -q mm' mm' , 

mm' 
foD = Spj. 

(11) 

Using Eqs. (6), (7), (11), we can get for the quanti­
ties fq the equations 

(12) 

h 
- s' 

X )Lss' rr'. 

p (13) 

It can be seen that as in the case of relaxation 
owing to the diffusion of radiation C7J the equations 
for different f~ are separated, and the relaxation 
times depend only on K, not on q. 

As will be shown below, Yo= 0; this expresses 
the conservation of the number of excited atoms. 
The physical meaning of the quantities y1 and y2 
has been made clear in earlier papers, [7,9] where 
it was shown that these quantities are the respec­
tive inverse relaxation times for circular and 
plane polarization. 

We now turn to the calculation of the quantities 
L~~; [Eq. (8)]. For this we must prescribe a con­
crete form of the interaction which leads to the 
transfer of excitation and to the redistribution 
over the Zeeman sublevels. If there is an allowed 
dipole transition between the ground and excited 
states, the main interaction between the normal 
and excited atoms is the dipole -dipole interaction 

V (t) = r-5 [3 (dAr) (dBr)- (d\IB) r 2 ]. (14) 

Here d.A and d.B are the operators of the dipole 
moments of atoms A and B, r = p + vt is the ra­
dius vector drawn from one atom to the other, p 
is the impact parameter, and v is the relative 
velocity. 

Let rpfn.J.! be the eigenfunction of the unper­
turbed Hamiltonian of the two atoms that corre­
sponds to the state in which atom A is in sublevel 
m of the excited state and atom B in sublevel J.! 
of the ground state. rp~J.! describes the state in 
which atom B is excited. The same value Eo of 
the total energy of the system corresponds to the 
two functions rpfn.J.! and rp ~W We shall regard 
these functions as chosen in a coordinate system 
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rigidly connected with the vectors p and v. For 
definiteness we direct the x axis along v and the 
y axis along p. 

The wave function of the system can be written 
in the form 

We can derive from the Schrodinger equation 
equations for the coefficients amt-t and bmt-t 
(ti = 1) 

These equations must be solved with the initial 
conditions 

bm~-t(- oo) = 0, amJ.L(- oo) =:aml-'0, 

<amJ.L0 (a~ww)*) = fmw(2jo + 1)-161'1-"· 

It is obvious that 

! (A) ~ * 
mm' = .L.i <amJ.L (DO) awJ.L (DO)), 

"' 
r;;:~. = L;<bm~-t(DO)b,;:,J-t(DO)>. 

"' 

(15) 

(16) 

(17) 

Angle brackets denote averaging over the initial 
state. 

The result of the solution of the equations (15) 
is to express the coefficients amt-t(t) and bmt-t(t) 
linearly in terms of the a~M: 

The matrices P and Q satisfy the system of 
equations 

(18) 

1-'1-t' "'"'' 1-',J-t' 
(Pmm' = L Vmm,Qm,m', 

mtl-lt 

J. . .q.t.' 1-lJ.Lt lltl-l' 

if)mw = L Vmm,Pm,m' (19) 
mtl-lt 

with the initial conditions 

The matrices A and B that appear in the ex­
pression (8) can be expressed in terms of these 
quantities. On the basis of Eqs. (4), (16)-(18) we 
get 

rntmt' J..ll-lt 1-li!t 

Amm' = (2jo + 1)-l L Pmm 1 ( CXl )[Pm,m,' {DO}]*, 

"'"' 
mimi' 

11mw = (2jo + 1)-l ""'' "'"' Qmm1 {CXl}[Qm,m,,(oo))*, (20) 

"'"'' 
We introduce instead of P and Q more conven-

ient quantities R and S: 

(21) 

From (19) we get for these coefficients the equa­
tions 

with the initial conditions 

By means of (8), (20) and (21) we can transform 
the expression (13) for YK into the form 

Vx = 8:n:2n S <D (v) v3 dv pdp-rx(p, v), (23) 

1 . . 
( v) -1----~ (-i)s-r ~(]I ]I X) Tx p, - 2(2jo + 1} r:7;s, -; r - r' P 

( it jl X) I'll, 1-'1-',* J.Lil, J-tl-'1* 
X s - s' p ~ (Rrs RTIS' + Srs Sr'S' ) . (24) 

"'"• 
Here and hereafter it is understood that the mat­
rices R and S are taken at t = oo • 

Using the properties of 3j symbols, we write 
T K in a form more convenient for practical calcu­
lations: 

Tx=~L; [t-(-1)i+><+2i,(2j1 +1){~l ~I~}] 
2. /1}1] 

J 

(25) 

(26) 

The matrix N is expressed in an analogous way in 
terms of the matrix S. The quantity in curly 
brackets in Eq. (25) is a Wigner 6j symbol. In 
writing Eq. (25) we have used the fact that 

jm 
~~ Jli 

mm' 

there is a precisely similar relation for the mat­
rices N and S. Equation (27) follows from (22) 
when we use the Hermitian character of the matrix 
V and the initial conditions for the matrix R. It 
follows from (25) and the properties of 6j symbols 
that r 0 = o. 

We now note that for the dipole-dipole interac­
tion (14) the quantities R and S that satisfy the 
equations (22), and consequently also the T K• de­
pend on the impact parameter p, the relative ve­
locity v, the wavelength .\ of the transition, and 
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the lifetime y of the excited level only through the 
single parameter a: 

a= ('J../ 2n) 3y I p2v. 

This can easily be seen if we use the fact that 

4 ( 2l't )3 v=3 ~ ~ ldml41 2 • 

14 

and go over in (22) to the dimensionless variable 
X= vt/p. 

Introducing in (23) the new variable a instead 
of p, and carrying out the integration over the 
velocity, we get the final expression for yK: 

').. 3 oo da y,. = nn(-2 )v ~ - 2 -r,.(a). n 0 ,a 
(28) 

The form of the function T K (a), and consequently 
also the numerical value of the integral in (28), 
depends only on j 1 and j 0• We have carried out the 
numerical integration of the system (22) for the 
case of greatest practical importance, h = 1, 
j 0 = 0 (the resonance lines of mercury, cadmium, 
and so on). For this case the equations (22) can 
be put in the form 

dC1m 9 . C +C ) i--=Cim+-asm8( 1m -lm; 
de 8 

. dCom . dC-Im 9 . C C 'de- =0, t~= -C-Im+ 8 asm8( 1m+ -lm), 

Here a new variable and new unknown functions 
have been introduced according to the formulas 

cos e = -vt 1 (p2 + v2t2)''•, 

00 00 
Sm,m(- a,8) = Rm,m(a, 8) 

= Cm,m(a, 8)exp{ im'8 +: ia(1-cos 8) }· 

(29) 

The integrals that appear in (28) can be ex­
pressed in terms of the coefficients Cm'm (a, 7T) 
in the following way: 

oo da 1 ""da 
~ 2-r!(a) = -12 ~ 2 {9 -ICu + C-1,-1-11 2 

0 a -oo a 

+ ICu- C-1, -11 2}, 

Here all of the Cm'm are taken at the value (} = 7T. 
Numerical integration of (29) and numerical 

calculation of the integrals gives for Yt and Y2 
the values 

'\'1 = 0,035 n'J..3y, (30) 

We recall that these values are for the case h = 1, 
jo = o. 

In resonance phenomena occurring in the scat­
tering of plane -polarized or unpolarized light 
(parametric resonance, and so on), at large pres­
sures the width of the resonance curve will be de­
termined by the quantity h· When there is cap­
ture of radiation the total inverse relaxation time, 
which determines the width of the resonance 
line, is composed of the quantities given by (30) 
and of the natural line width, diminished on account 
of diffusion of radiation. [7] When there is com­
plete imprisonment (for h = 1, j 0 = 0) 

Let us point out the limits of applicability of the 
treatment given here. In order to regard the inter­
action as binary collisions, it is necessary that the 
cross section be smaller than the square of the 
mean distance between atoms; that is, nA.3 ( y I ~w )3/2 
« 1 (~w is the Doppler width of the line). The 
treatment has actually been carried out for zero 
magnetic field. It remains valid, however, in 
fields in which the Zeeman splitting is small in 
comparison with the inverse of the effective time 
of flight, i.e., the quantity ~w(~w/y )112• Clearly 
this condition is satisfied under the usual experi­
mental conditions, in which the Zeeman splitting 
is smaller than the Doppler width of the line. 

The collision broadening of double-resonance 
lines has been calculated recently by Byron and 
Foley. [tO] Their calculations contain errors, how­
ever. They regarded the density matrix as diago­
nal. This would be justified if the relaxation of 
coherence occurred more rapidly than the equali­
zation of the populations in the Zeeman sublevels. 
As can be seen from our treatment, these two 
processes go with the same speed. Besides this, 
Eq. (9) of the paper of Byron and Foley is erro­
neous, since in it the chronological product of 
noncommuting operators is dealt with as if they 
commuted. Despite these errors, their result is 
only 15 percent larger than the exact value of y 2 

[Eq. (30)]. For the most interesting case, that of 
mercury, there are no reliable experimental data. 
The recently measured collision broadening of the 
double resonance lines [UJ of cadmium is about 
2.5 times the value of y2 given by Eq. (30). Byron 
and Foley have pointed out that for cadmium and 
zinc, for which the intercombination transitions 
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are rather strongly forbidden, interaction through 
intermediate states may be of importance. Their 
calculation of the corresponding cross section is 
also affected, however, by the same mistakes as 
mentioned above. 

We are grateful to I. M. Band for his kind coop­
eration in making the numerical calculations. 

1 A. A. Vlasov and V. S. Fursov, JETP 6, 751 
(1936). 

2 J. Brossel and F. Bitter, Phys. Rev. 86, 308 
(1952). 

3 J. N. Dodd and G. W. Series, Proc. Roy. Soc. 
A263, 353 (1961). 

4 E. B. Aleksandrov, Optika i spektroskopiya 14, 
436 (1963), Optics and Spectroscopy 14, 233 (1963). 
0. V. Konstantinov and V. I. Perel', JETP 45, 279 
(1963), Soviet Phys. JETP 18, 195 (1964). A. Corney 

and G. W. Series, Proc. Phys. Soc. 83, 207, 213 
(1964). 

5 Aleksandrov, Konstantinov, Perel', and Kho­
dovo!, JETP 45, 503 (1963), Soviet Phys. JETP 18, 
346 (1964). 

6 J. P. Barrat, J. phys. radium 20, 541, 633, 
657 (1959). 

7 M. I. D'yakonov and V. I. Perel', JETP 47, 
1483 (1964), Soviet Phys. JETP 20, 997 (1965). 

8 A. Edmonds, CERN 55-26, Geneva, 1955. 
9 M. I. D'yakonov, JETP 47, 2213 (1964), Soviet 

Phys. JETP 20, (1965). 
1° F. W. Byron, Jr., and H. M. Foley, Phys. Rev. 

134, A625 (1964). 
11 Byron, McDermott, and Novick, Phys. Rev. 

134, A615 (1964). 

Translated by W. H. Furry 
45 


