
SOVIET PHYSICS JETP VOLUME 21, NUMBER 1 JULY, 1965 

SPIN OF VIRTUAL GRA VI TONS 

V. I. ZAKHAROV 

Institute of Theoretical and Experimental Physics, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 11, 1964 

J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 303-309 (January, 1965) 

The problem of the spin of an interacting gravitational field is discussed within the frame­
work of linearized gravitational theory. It is shown that virtual gravitons can carry an an­
gular momentum of 2 or 0. Owing to the transversality of the gravitational vertex, only 
gravitons of spin 2 with a chirality ± 2 are emitted. It is shown that gauge invariance plays 
the role of an auxiliary condition in gravidynamics: only gauge-invariant fields interact 
with matter. This result is generalized to the case of fields characterized by higher spins 
and mass zero. 

GAUGE invariance in electrodynamics plays the 
role of a peculiar auxiliary condition restricting 
the possible values of spin of virtual quanta [1]. The 
vector potential of the electromagnetic field can be 
separated into two parts corresponding to spin 1 
and 0, and it then turns out that quanta of spin 0 
which are not gauge invariant do not interact with 
the charged particle current. The equations of the 
general theory of relativity in the approximation 
linear in the gravitational constant k (k = 0.59 
x 1o-38 m_p2; mp is the proton mass, n = c = 1) are 
invariant [2] with respect to the transformation (4) 
which is analogous to the gauge transformation in 
electrodynamics. From the formal point of view 
this similarity is related to the fact that the equa­
.tions of the free gravitational field coincide in the 
linear approximation with the equations for par­
ticles of spin 2 and mass 0 [3]. But, gauge trans­
formations exist for fields characterized by arbi­
trary nonzero spin and mass 0 [4] , and invariance 
with respect to these transformations is preserved 
also when interactions are taken into account both 
in electrodynamics and in gravidynamics. 

In this paper it is shown that within the frame­
work of a linearized theory of gravitation the spin 
of an interacting gravitational field is equal to 2 
or 0 1>. Fields corresponding to these spins are 
gauge-invariant in contradistinction to a field of 
spin 1 which does not interact with matter. Since 
a virtual graviton can carry two values of angular 
momentum, the propagation function for a graviton 
can be represented in the form of a sum of two 
Green's functions associated with an exchange of 
a graviton of definite spin 2 or 0. The correctness 

of such a decomposition is confirmed by an inves­
tigation of the simplest diagrams. 

Thus, an interacting gravitational field is char­
acterized by six independent spin states in contra­
distinction to free gravitons which have only two 
independent orientations of spin. It is shown that 
because of the transversality of the gravitational 
vertex only gravitons of spin 2 and helicity ± 2 can 
be emitted. At the end of this paper we discuss the 
spin structure of an interacting field of spin s and 
mass 0. Virtual particles of such a field can carry 
angular momentum s- 2k (k = 0, 1, 2, ... ). 

1. The linearized theory of gravitation has been 
investigated by a number of authors ( cf., for ex­
ample, [2•5•6J). In this theory the gravitational 
field is described by the small deviations hJ.tv of 
the metric tensor gJ.tV from the Galilean values: 

gJ.Lv = llJ.Lv + hJ.Lv, lloo = -llu = -ll2! = -llaa = 1; (1) 

h11v satisfy the equations 

where BJ.tv is the symmetric energy-momentum 
tensor for matter. 

Under the transformation of coordinates 

x/ = xJ.L + ~J.L (3) 

( gJ.t is an arbitrary vector field) h11v goes over 
into h~v: 

h' J.l.V - hJ.Lv- ~J.L. v - ~v, J.l.• (4) 
l)This result has also been obtained by V. I. Ogievetskii 

and I. V. Polubarinov (private communication). The requirement of invariance under this trans-
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formation leads to the energy-momentum conser­
vation law, which in the linear approximation has 
the form 

81lv,ll=0. (5) 

In diagram language equation (5) means that the 
gravitational vertex is transverse ( cf., Fig. 1) 

where [1) , ( 2 I are state vectors for particles 
with momenta Pi> P2· 

The Green's function for a graviton has been 
obtained in the paper by Gupta [5]: 

Dllv,aa(x) = (2!)" ~ Dllv,aa(q)eiqxd"q, 

We note that formula (6) follows from the relation­
ship between the gravitational potentials and 
D {3 [6]. 

Jlll,Oi • 

(7) 

The general form (the longitudinal terms are of 
no importance because the vertex is transverse ) is 

q2D~'"· a~ = a ( bllabva + bll~bva) - bbllvba~; a, b = const. 

In the static limit ( q0 ~ 0) 

foo = m; fo; = 112(Mq]; (i = 1, 2, 3) 

( M is the mechanical angular momentum), and (7) 

leads to the well known expression [2] for the field 
produced by a rotating body only for a = b = 1. 

2. It is clear that the symmetric tensor h1111 
represents a superposition of fields with spins 2, 
1, 0: 

(8) 

The expansion (8) can also be obtained explicitly 
with the aid of an invariant operator for the square 
of the spin r 2 utilized by Ogievetski'L and Polubari­
nov[1•7J (further references are given there): 

f 2 = - 0-l (1f2'i.llv'i.llvPJ..2 - 'i,llJ..'i,llPPi.Pp)' 
(f2hvaBhaa<l) = l(l + 1)hllv(l) (I= 0, 1, 2), (9) 

where PA. = - io/oxA,, 'i. JJ.V are generators of the 
Lorentz rotations of the components of the tensor 

hJlll: 

2i('i. 11v)aa'~'6 = bva(bllobva- ISI'pbvo) + 6oa(61lv6va- 61la6vv) 

+boa (61lv6va- 61l~6vv) + 6ya{61lobva- bllabvo), 

0 -i is the integral operator: 

0-1/(x) = ~ DF(x- x')f(x')d4x', 

where DF(x-x') is the causal Green's function 
for the d' Alembertian. 

We introduce the projection operator rrl ( l = 0, 
1, 2 ): 

III,_ [f2 -l2(l2 + 1)][f2-la(la+ 1)] 
- [Zt ( Zt + 1) - l2 ( l2 + 1)] [Zt ( z, + 1)- la ( Za + 1)] ' 

z, =I= l2 =I= la, {I,, /2, la} ~ {0, 1, 2}. (1 0) 

It follows from (8) and (10) that 

Calculation leads to the following results: 

hllv(2) = hllv- 0-l(hall, av + hav, all) + 1/a0-1haa, llV 

+ 1/sbllv( 0-1haa, a~- haa) + 2/a0-2ha~. aBilv, 

hllv(l) = O-! (hall, av + hav, all) -2 0-2haa, aBilv, 

(11) 

h~2J, hVJ have the right number of independent 
components -5 and 3 -since they satisfy the auxili-

d ·t· h<2> h12 > 0 h<1> Th ary con 1 1on 1111 = 1111 ,11 = , 1111 ,1111 = 0. ere 
are two fields with spin 0, since a scalar can be 
formed from a tensor by two methods- h 0101 , 

h 01(3,a{3· Multiplication of these quantities by 6Jll1 
or differentiation with respect to x 11 does not, of 
course, alter the fact that they describe scalar 
particles, but correspond to different Lagrangians 
for the interaction of these fields with matter. 

A field of spin 1 has one ''extra'' index which 
can arise only as a result of differentiation. There­
fore, it is from the outset clear that 

(12) 

B 11 is a vector field. Substitution of (12) into the 
left hand side of equation (2) shows that because of 
its tensor properties alone h~1J satisfies a homo­
geneous equation independently of 81111 • It is there­
fore clear that a field of spin 1 does not interact 
with matter and is completely determined by the 
initial conditions. The same can be said also with 
respect to a part of the field 0. Physical meaning 
can be ascribed to h 12 > and h< 0>' where Jlll Jlll ' 
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(13) 

For a given momentum the virtual gravitons 
are characterized by six independent spin states­
five for spin 2 and one for spin 0. Thus, the num­
ber of independent states differs by four from the 
number of components of the tensor hMv• and this 
is consistent with the existence of four independent 
transformations (4). 

Just as in electrodynamics [i], the physical 
fields are gauge invariant, while the Lagrangian of 
the free gravitational field can be expressed only 
in terms of hUJ and h~0J'. The invariance of fields 
of higher spin ( 1 in electrodynamics and 2 in gravi­
dynamics ) already follows from the fact that the 
gauge tensor (scalar or vector respectively) does 
not contain fields of higher spin. In contrast to the 
electromagnetic field the gravitational field car­
ries, generally speaking, two values of angular 
momentum. Exceptions occur in cases when e a a 
= 0, for example, for fields of arbitrary spin s 
("" 0) m = 0 [B]. Then hJ.lv can be subjected to the 
same requirements as in the case of the free grav­
itational field haa = 0, h!J.V,J.t = 0, and the spin of 
the interacting field is equal to the spin of the free 
field[ 7J, i.e., 2. 

3. We now check the results obtained above di­
rectly by means of diagrams. As examples we 
shall consider the gravitational annihilation of a 
pair of scalar particles and the vacuum transitions 
of particles of different spin into gravitons. In or­
der to separate the contributions of the scalar and 
the quadrupole gravitons we represent the Green's 
function for a graviton in the form of a sum of 
Green's functions associated with an exchange of 
a graviton of definite spin dUv,a/3: 

D 22 H 00 
JlY, 01~ = dJlY, 01~ + dJlY, 01~ + dJlY,o;~. 

In the case of electrodynamics the analogous equa­
tion has the form 

q-26Jlv = dJlvll + dJlvoo, 

where dUv is the Green's function for the photon 
in the Landau gauge: 

11 1 ( qJlqV ) 
dJlv = qi 6Jlv- ---;jZ . (14) 

The commutation relations for the creation op­
erators for gravitons of definite spin follow from 
(6) and (11): 

(15) 

2 00 1 2 qo;q~ 2 qJlqY 
q dJlv, a~ = - 3 OllvOa~- -;3 6llv ----;j2- 3 Oa~ -q2 

+ 8~JLqvqo;~ 
3 q4 

(16) 

dt2v, a/3 is analogous to the Green's function for 
particles characterized by s = 2 and m "" 0 ob­
tained by Fierz [9]; dUv, a/3 represents the propa­
gation function for particles of spin 1 in the case 
of derivative coupling, which can be easily under­
stood taking (12) into account. 

In practical calculations the longitudinal terms 
can be discarded: 

q2D~2v, "'~ = O~taOv~ + OvaO~t~- 2/3 o"vOa~· 
The gravitational annihilation of a pair of scalar 

particles into another pair of scalar particles but 
of different mass is described by the diagram of 
Fig. 1 where 

r l].Va, b = <jlz* [2pJla, bpva' b - lf2 ( qJlqV- q20Jlv)] <jl!, 

P~ta, b = lj2 (p1a, b + p2a, b) Jl• 

In the center of inertia system 

Pia= (w, P); -pza = (w, -p); 

P1b = (w, t); -pzb = (w, -t); 

The matrix element is 

Expressing M 1 in terms of the angle () between 
the vectors p, t we obtain 

(17) 

where P 2, 0 are Legendre polynomials. 
If the initial state of the pair is characterized 

by a definite relative angular momentum L, then 
the matrix element differs from 0 only for L = 2 
or 0. 

From considerations of tensor dimensionality 
the vacuum transition (Fig. 2) of a scalar particle 
with four-momentum q into a graviton corre­
sponds to the vertex 

r~tv ~a(q2 )q~tqv + b(q2)q2o~tv· 

In virtue of the transversality condition a( q2 ) 

= - b(q2 ). Just as in the preceding example, the 
matrix element is proportional to the sum of two 
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FIG. 2 

expressions: 

M r 22 00 
2 "' JJ.VD!J.v, a~f all + f !J.VD!J.v, a~f afl. 

The first term is in fact equal to 0, since 

22 
f !J.VD!J.v, aflf a~ ,...., qaq~f a~ = Q. 

Thus, we have obtained the natural result that a 
scalar particle goes over into a graviton which is 
also scalar. 

In considering analogous processes for a vector 
(or a tensor) field AJ.l. ( AJ.l.v) it should be taken 
into account that virtual particles possess, gener­
ally speaking, spins 1 and 0 ( 2, 1, 0 ). It can be 
easily verified that scalar particles of the field 
AJ.l. ( AJJ.v) go over again into scalar gravitons, 
while particles of spin 2 of the field AJ.l.v go over 
into gravitons of spin 2. 

4. In contrast to an interacting field the spin of 
a free gravitational field is equal to 2 [5], and this 
agrees with the quadrupole character of classical 
gravitational radiation. Moreover, like all par­
ticles of mass oC•J, the free graviton is charac­
terized by only two independent polarization 
states [SJ. We shall show, following Feynman's 
discussion [ 10] of the problem of virtual and real 
quanta, that of the six types of virtual gravitons 
only particles of chirality ± 2 can be emitted. 

The diagram of Fig. 1 corresponds to the ma-
trix element M3: 

M 8:rtk a b a b 
3 = --2--2 [2f !J.Vf !J.V- f !J.IJ.f w], 

()) -q 

where w is the energy of the virtual graviton, 
while q is its momentum, q ~ { 0, 0, ~}. We 
transform this expression utilizing the condition 
of transversality 

A real graviton differs from a virtual one by 
the fact that for it w = q3• If we assume that the 
graviton is almost real, i.e., that it is absorbed 
"very far away" from the point of emission, then 

w ~ q3 and in the matrix element we can retain 
only the pole term: 

M 1 8nk [ a b b a b 
3 = -2--2 (fu- f22) (f11- fz:J) + 4f1zf12l. (18) 

())- q3 

On the other hand, the exchange of gravitons of 
chirality ± 2 corresponds to the matrix element 
M: 

M ~ ·r 16:nk ··r b 
4 = L.J 'Ya~' alia 2 2 'Yilv' JJ.V , 

i=1,2 ()) - q3 

where y f;J are the polarization tensors ( i = 1, 2 ) : 

ya111 = ! ( ~ _ : ) 'Ya112 = : C ~: ) . 
Since M3 = M4, this shows that the only gravitons 
that can be emitted are those whose component of 
angular momentum along the linear momentum is 
given by ±2. 

We note that the nonpolar term neglected in for­
mula (18) is responsible for various static effects, 
and, in particular, for the Newtonian interaction 
between masses. 

5. The results concerning the spin structure of 
an interacting gravitational field can be easily gen­
eralized to the case of particles of arbitrary spin 
and of mass 0. Free fields of spin s are described 
by a symmetric tensor of the s -th rank AJ.l-1 .• • J.l. 
(AJ.l.tJ.l.z ... J.l.s = 0 ). Under a gauge transformation [4] 

AJ.l-1 .•• J.l.s go over into A~1 ••• J.l.s: 
A' -A a !J., ... IJ.s- IJ., ... IJ.s+ "'~IJ., ... I!s+···+ 0"s~"''''"s-1' (19) 

where ~J.l-t .. ·J.l-s-1 is a symmetric tensor of rank 
s - 1. If the theory is invariant with respect to 
(19) also when the interaction is taken into account, 
then there exists a certain conservation law and 
the vertex is transverse. 

A simple generalization of equations (12) and 
(14) shows th::~.t the Green's functions correspond­
ing to an exc~tange of a virtual particle of spin 
s- 2k + 1, k = 1, 2, ... , are proportional to q, and 
because the vertex is transverse these fields give 
no contribution to the interaction. Similarly, in 
expressions for fields of spin s - 2k, k = 1, 2, ... 
we have to take into account only terms containing 
a product of k 6-symbols [cf. (13)]. 

In Sec. 2 it was shown that the symmetric ten­
sor of the second rank hJJ.v describes one field of 
spin 2 and 1 and two fields of spin 0. In the gen­
eral case the symmetric tensor of the s -th rank 
AJ.l-1 ... J.l.s describes one field of spin s and s -1, 
two fields of spin s - 2 and s -3, three fields of 
spin s- 4 and s- 5 etc. Similarly, the gauge ten­
sor ~J.l- 1 ... J.l.s-1 represents a superposition of fields 
of spin s -1 and s - 2, two fields of spin s - 3 and 
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s- 4, etc. Therefore, there exists one gauge­
invariant field corresponding to each value of the 
spin s - 2k ( k = 0, 1, ... ) and there are no fields 
of spin s - 2k + 1 ( k = 1, 2, ..• ) which are invariant 
with respect to (19). The proof of the fact that it 
is just this gauge-invariant combination that ap­
pears in front of the product of k o-symbols is 
somewhat more complicated and is based on the 
explicit form of the operator r 2 for arbitrary spin 
and on the generalized formula (10). 

Thus, an interacting field AIJ.l···IJ.s of mass 0 
carries, generally speaking, an angular momentum 
s- 2k (k = 0, 1, 2, .•. ), and the fields correspond­
ing to these spins are gauge invariant. 
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