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The bremsstrahlung of slow electrons on neutral systems is considered. A graph technique 
is developed which allows one to take account of radiation from the atom as well as from 
the incident particle. If the elastic scattering cross section is weakly dependent on energy, 
the results are an extension of known results. A comparison is made for the intensity of 
the radiation from a gaseous plasma in the infrared region. 

AT present there exists no satisfactory theory of 
the bremsstrahlung of slow electrons on neutral 
atoms. Attempts were made to relate the brems­
strahlung cross section to the elastic scattering 
cross sections. [1- 5] But here the latter was either 
defined in Born approximation, [1] or only s -scat­
tering was taken into account, [ 2•4• 5] which is com­
pletely insufficient in a number of cases. Firsov 
and Chibisov [SJ tried to take account of the radia­
tion from the atom by classical methods, which are, 
however, not applicable to this process. 

In the present paper we investigate the brems­
strahlung from the system slow electron-neutral 
atom. In the discussion of this problem it is natu­
ral to assume that 1) the atoms (molecules) are 
in the ground state, since the electron energies of 
interest to us are not sufficient for excitations; and 
2) for the same reason the interaction of the charge 
with the quantized field can be described in the di­
pole approximation. Here it turns out that the con­
tribution to the radiation from the free particle is 
mainly determined by the elastic scattering ampli­
tude fa0a 0 ( k0, k) off the energy shell, where a 0 is 
the set of quantum numbers describing the neutral 
system in the ground state, and k0 and k are the 
wave vectors of the free electron before and after 
the radiation. Estimates of the contribution to the 
radiation from the atom, with the scattering treated 
in Born approximation, give a value which is 
smaller by two orders of magnitude than the ra­
diation from the electron. 

1. GRAPH TECHNIQUE 

The interaction of the electron and the neutral 
atom with each other and with the radiation field is 
conveniently described in the language of Feynman 
graphs. For a slow particle one must sum over the 
whole perturbation series for the scattering, since 
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FIG. 1 

the probability for multiple scattering is larger 
than for single scattering. The proposed graph 
technique is close to the technique developed by 
Amado [SJ for the problem of neutron-deuteron 
scattering. We shall represent the atom (molecule) 
by a heavy external line which describes the propa­
gation of the atom as a whole; the index a near the 
line denotes the quantum numbers for the corre­
sponding state. The free particle is represented 
by a thin line with momentum p. For definiteness, 
we shall in the following talk about an atom. 

As an example, we consider the graph describing 
the scattering of an electron with momentum p 0 on 
an atom in the ground state in second Born approx­
imation (Fig. 1 ) . The vertices 1 and 2 correspond 
to the point charge of the electron, the vertices 3 
and 4 to the form factor of the atom, Fa0a(K), 
which is equal to 

z ,, 
Fa,a(K) = e ~ ~eiKrs':Y*a'Ya,dT, 

S=l 

(1) 

where K = k- k0; 'l'a0 and 'l'a are the wave func­
tions of the atom in the initial and final states; the 
summation goes over all atomic electrons. The 
wavy line corresponds to the Green's function of 
the virtual photon 4n/K2• The two parallel internal 
lines represent the Green's function for the non­
interacting electron-atom system. As a result we 
find for the matrix element 

M (k k) _ 4 'V \' ~ 4:rt 4:rt Fa,a' (Kl) Fa'a (K2), 
a,a o. - e LJ J (2:rt)3 K 2 K 2 E _ E' 

a' 1 2 o 

Eo = Ea, + Po2f2m, 

E' = Ea' + p'2f2m, K 1 = k' -k0 , K2 = k-k'. (2) 



194 V. KAS'YANOV and A. STAROSTIN 

FIG. 2 

The sum of all graphs of perturbation theory 
will be pictured by a graph with a shaded square 
which corresponds to the exact matrix element de­
fining the scattering amplitude 

MaJa(ko, k) = 2rr.li2m-1fa,a(ko, k). (3) 

Figure 2 shows the graphic representation of the 
Lippman-Schwinger equation for the scattering am­
plitude off the energy shell. C7J 

In the case when electron exchange is essential, 
the graphs are modified: the atomic form factor of 
(1) is replaced by the corresponding expression in 
the Born-Oppenheimer approximation. [B] The ker­
nel in the integral equation (3) is changed accord­
ingly. In the following we shall not specify the form 
of the function Faa'(K), assuming that the exchange 
is included. We note that, instead of the usual pro­
cedure of iterating (3) according to Born, we may 
use the unitarity relation which expresses the 
imaginary part of the amplitude in n-th order per­
turbation theory through the n -1 st order ampli­
tudes determined earlier, and then establish the 
entire amplitude in n-th order by application of the 
dispersion relation. This method has been used 
successfully in quantum electrodynamics, [s] and 
it does not appear superfluous to us to call atten­
tion to it in the theory of atomic collisions. 

If the interaction with the quantized radiation 
field is included, new graphs occur in which the 
real photon is represented by a dotted line. In 
lowest order perturbation theory in the interaction 
with the radiation field, the graphs of interest to 
us are shown in Fig. 3. The graphs 1 to 3 corre­
spond to radiation by the free particle, and the 
graphs 4 to 6 to radiation by the atom. An esti­
mate of the contributions from these graphs is 
given in the following section. 

2. CROSS SECTION OF THE BREMSSTRAHLUNG 
PROCESSES 

Let us assume that the largest contribution to 
the bremsstrahlung comes from graphs 1 and 2 of 
Fig. 3. We shall see in the following when this as­
sumption is valid. In this case the differential 
cross section for the bremsstrahlung with emis­
sion of a photon with frequency in the interval dw 
and a wave vector with direction in the interval 
dOy has the form [to] 

da(1.2) = 2rtm2w2k dw dOk dO.,Q J Akok J2, (4) 
/i4c3 ko ( 2n) 6 aoao 

FIG. 3 

where k0 and k are the wave vectors of the elec­
tron before and after the radiation; dOk is the 
element of the scattering angle of the electron, Q 

is the normalization volume, and m is the elec-

tron mass. The quantity A~~~o is the sum of the 

matrix elements for the graphs 1 and 2 of Fig. 3 
in the dipole approximation: 

Akok =elil/2rr.li M(ko,k) (e,ko-k). (5) 
aoao m v wQ liw 

Here m ( k0, k) is the matrix element correspond­
ing to Fig. 2, and e is the polarization vector of 
the photon. The quantity M ( k0, k) can be written 
in the form 

M(k0 , k) = ~e-ikr'fa;(R)Hae(r, R)'Yk,(r, R)drdR. (6) 

'~~k0 (r,R) is the exact wave function of the elec­
tron-atom system, whose interaction is described 
by the Hamiltonian Hae ( r, R). Expanding '~~ko ( r, R) 
in a complete set of atomic functions, one can show 
that the main contribution to the integral (6) comes 
from distances r "' r 0, where r 0 is the "effective" 
range of the interaction. If atomic polarization ef­
fects are unimportant, i.e., if r 0 is of the order of 
the Bohr radius a 0, then the elastic scattering 
cross section off the energy shell depends weakly 
on k0 and k. In this case it can be set equal to the 
scattering amplitude on the energy shell. For the 
time being we shall restrict the discussion to this 
case. 

Integrating (4) over dOy and dOk and summing 
over the polarizations of the photon, we obtain ac­
cording to what has been said above 

2 a k dw ~ dael 
dcr<1•2l·=------ (po-p) 2 -dQ. 

3n m2c2 ko w dQ 
(7) 

If the photon energy is much smaller than the 
energy of the free particle, fiw « E0, then I Po I 
"' I p I and the integral in (7) is expressed through 
the transport cross section. For frequencies fiw 
"' E 0 expression (7) approaches zero like ../ E0 - fiw . 
Writing the differential cross section dael I dn as 
a sum over Legendre polynomials, we can show 
easily that, if the contribution from the interfer-
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ence terms is small (one of the partial waves pre­
dominates over the others), then (7) takes the form 

1 2 4a Eo v ftro ( ltro ) do{' l = --- 1-- 2-- CJe!(Eo). 
3n mc2 Eo Eo 

(8) 

Analogous formulas are found in the literature 
for.the case of s-scattering. [4, 5] But as we see 
from our result, the formula holds not only in this 
case. In the scattering from oxygen atoms, the 
main contribution comes from the p wave, starting 
from the energy 0.5 eV. [UJ Here the expression 
(8) remains valid. 

The differential cross section for the radiation 
corresponding to the graphs 4 and 5 of Fig. 3 is 
equal to 

dcr(•.sJ = 2nm2ro2kdro dOk dO..,Q I Bkok l2 ( 9 ) 
ft4c3 ko ( 2n) 6 aoao ' 

kk 
where Ba~a0 for the sum of graphs 4 and 5 has the 
form 

B"·k = - }!__ I rz;Ji. li 
a,a, m v WQ 

X~ [ (ep)a,a-M~~!. + M~:!' {ep)a'a, ] (1 0) 
a' Ea.- Ea'- tiro Ea,- Ea' + tiro • 

In the case of graphs 1 and 2, ( p) ""' 0 for the 
free particle, and therefore dO'<i, 2>"' dw/w (except 
for frequencies close to zero, where perturbation 
theory is inapplicable on account of the infra-red 
catastrophe ) . For the atom (graphs 4 and 5 ) 
( a 0 I p I a 0 ) = 0, and neglecting the quantity tiw com­
pared to Ea0 - Ea' in the energy denominators in 
the sum (10) and using 

(ep);J = imft-1(E;- Et) (eR);J, (11) 

we obtain 

- <'I'k(-) jHae(eR) j<Dk,a,)] ao 
(12) 

>~t<-J is the exact wave function corresponding to 
converging spherical waves, and <I> is the wave 
function of the non-interacting system. Since the 
operators ( eR) and Hae commute, (12) vanishes 
on account of the relation 

<<DtiBHael'¥;<+>> = <<DtlBTj<D;) 

= <<DtiTBj<D;) = <'I'HIHaeBI<D;), 

where B is an arbitrary operator commuting with 
Hae and T is the scattering operator (T = S -1 ). 

Retaining the next term in the expansion of (10) 

in powers of fiw/ ( Ea0 - Ea'), we obtain the follow­
ing estimate of the quantity (9) in Born approxima­
tion for M (after integration over angles and sum­
mation over polarizations): 

where 

is the statistical polarization tensor of the atom. 
In the same approximation the radiation from the 
free particle can be written in the form 

dcrl..1•2> 256n2ma3Eo --;z;;;-= ~~ l<ao I r21 ao)l 2• (14) 

It is interesting to note that (13), as a function 
of the frequency, reaches its maximal value for 
fiw "' 0.8 Eo and vanishes for fiw close to zero or 
E 0, whereas (14) is large for small tiw « E0• Com­
paring (13) and (14) for fiw"' 0.8 E 0, we find that 
the cross section for the radiation from the atom is 
at least two orders of magnitudes smaller than for 
radiation from the free particle if f3il "' e 2( r 2 )/lao· 
Although the true value of f3il may differ signifi­
cantly from this estimate, the value of the scatter­
ing cross section [formula (14)] changes simulta-
neously in order of magnitude like 1r I ( r 2 ) 12 /a5. 
Since the estimates are based on the Born approxi­
mation, it is hardly justified to use a more precise 
value for f3il· 

Finally, we give the expression describing the 
contribution from graphs 3 and 6 of Fig. 3. For 
graph 3 we have 

r-- kk' k'k 
Ck.k __ eli v 2nli 'V \ dk' MC:.a' (ek') Ma·a. <la'a"• 

a,a,- m . roQ afa:- ~ (2n)3 (Eo- E') (Eo- E") 

(15) 

where 

E' = Ea' + li2k'2 I 2m, 

E" = Ea" + liro + li2k'2 I 2m. 

By considerations similar to the preceding ones 
we can estimate this integral in Born approxima­
tion for M. The result is that in our case the con-

tribution from (15) can be neglected, since ckok 
a0a 

can be written as a gradient with respect to k of a 
slowly varying quantity, [24 ] and also because for 
fiw « Eo the energy denominators in (15) are finite, 
whereas (5) contains an extra power of the fre­
quency in the denominator. 

For the graph 6 we obtain 
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Dk,k = _ _!_ 2:n:n "'i;l \ ~ M a:a• ( ep )a' a" M a" a, V-- I kk' k'k 

a,a, m wQ af;." J (2:n:) 3 (Eo- E') (Eo- E") · 
' (16) 

For the same reasons as in the case of graph 3, 
the estimate for (16) gives a value which is negli­
gible compared to the contributions from graphs 1 
and 2. 

3. INTENSITY OF THE RADIATION FROM A GAS. 
COMPARISON WITH EXPERIMENT 

The intensity of radiation from 1 cm3 of gas can 
be expressed in the following way: 

• da 
I.,dw=NeNaliwdw ~ -vj(E)dv, (17) __ dw 

V2i'1w/m 

where f( E) is the Maxwell distribution function, 
and Ne and Na are the concentrations of the elec­
trons and neutral atoms. 

Since earlier we considered ael a slowly vary­
ing function, we can take it out from under the in­
tegral sign and replace it by some average value. 
Integrating (17), we have 

1i - [ ( liw ) /.,dw = 10-2-,1--aNeNaliw(kT)-'hdw (kT)2K1 -
m 'C2 2kT 

hw ( hw )] +-kTK0 -- e-T!ro/2hT 
4 2kT 

(18) 

where Kn ( x) is the modified Bessel function of 
the second kind, or Basset function. [12 ] 

Taking account of the asymptotic form of Kn (x ), 
we obtain 

1) for liw /2kT~ 1, lw = 2. 10-21im-'f,c-2aN.Na(kT)'I'; 

2) for liw /2kT ';?> 1, 

I.,= 4.4 · 10-31im-'hc-ifiN.Na(fi(t))'f,e-hro/kT. 

For fiu/kT ..... 1 the result of the integration 
according to Firsov and Chibisov [ 5] may differ 
from (18) by an order of magnitude. 

Taking into account that 

I c2 
kv = 4~v3 (ehv/kT -1), (19) 

we have for the absorption coefficient 

h ~ ( hv ) kv = 8·10-L-,-1 -2 aNeNa(kT)-'h sinh --
m ~ 2kT 

x[(kT) 2K 1 (-hv )+hvkTKo(l!Y_)] (20) 
, 2kT 4 2kT . 

It is interesting to compare these results with 
the experimental data. 

The contribution from free -free transitions in 

neutral systems is important in the infra-red re­
gion for large concentrations of electrons and neu­
trals. In air the electrons are mainly formed on 
account of the ionization of NO molecules, and at 
large pressures (of the order of 10 atm) the free­
free radiation mechanism may play an important 
role. The first calculations of the quantity IA. 
(W/cm3 srJ..l) determined by this mechanism were 
carried out in [13 ]. The authors assumed that for 
T ..... 8000°K and pressures p ..... 30 atm brems­
strahlung on neutral oxygen atoms plays the main 
role. However, the agreement with experimentC14 ] 

which these authors claim, is due to a value of the 
scattering cross section a ..... 81ra5 which is too high 
compared with the experimental data. [ 15] Actually, 
the most important contribution to the radiation 
under these conditions comes from the N2 mole­
cules. [ 16 ] 1) 

Figure 4 shows the results of experimentC16J 
and the calculations with the help of formulas of 
the type (18) for the quantity IA.. For comparison, 
the results of calculations [ 16 ] on the basis of for­
mulas analogous to the Kramers formula are also 
shown. The elastic cross sections for 0, N, and 
N2 were taken fromC 15• 17• 18J. 

~, W/cm3 •sterad •p. 

1.0 

0.8 0 

8 

0,5~ : • fo 0."-

o.z ~ o 0 0 

4 5 8 7 

lt.,;' 

FIG. 4. Intensity of radiation in air. o - experimental points 
obtained by Taylor, [16 ] 1 - curve derived from the Kramers 
formula in[' 6 ], 2 - present work. 

It seems to us that it is hardly worthwhile to 
use such formulas for the computation of the proc­
ess under consideration. 

In particular, TaylorC 16•19 ] arrives, on the basis 
of the Kramers formula, at the wrong conclusion 
that the contribution from the neutral N atoms to 
the bremsstrahlung is larger than from the 0 
atoms. 

In Fig. 5 we show the results of the measure­
ment of the radiation intensity in a shock wave in 
pure nitrogenC 16 ] for T = 8000°K and p = 35 atm 
and also our values computed in the same way as 
for air. 

l)This was pointed out to us by L. M. Biberman. 
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I,_, W/cm3•sterad•p. 

/,0 

0.0 ~- 8 
0 

FIG. 5. Intensity of radiation in pure nitrogen. 0 - experi­
mental points obtained by Taylor.[1 •] 1 -curve derived from 
the Kramers formula in[ 16 ], 2 - present work. 

Taking into account the inaccuracy of the ex­
perimental determination of the elastic scattering 
cross section and the contribution from other proc­
esses (molecular bands, free -free transitions in 
ionic fields ) we may regard the agreement with 
experiment as satisfactory. 

We have also made estimates of the maximum 
of the emissivity of an oxygen and nitrogen plasma 

.for the temperatures 10 500 and 13 000°K on the 
basis of the evaluation of the experimental data of 
Boldt[2o] by Biberman and Norman. [ 21 ] Under 
these conditions, the main contribution comes 
from the recombination radiation and bremsstrahl­
ung on positive ions and also from the radiation 
due to the formation of negative ions. For the tem­
perature 10 500°K and frequency 11'"" 5 x 1014 sec-1 

the emissivity due to the bremsstrahlung is of the 
order 10-10 erg/cm3 rad for the nitrogen plasma 
and about twice as large for the oxygen plasma. 
For T = 13 OOOaK and the same frequencies the 
results are three times larger in both cases. These 
data are not in disagreement with the measured 
total radiation intensity. 

We have made a comparison of the proposed 
method of calculation with the results of the meas­
urement of the relative intensity from a mercury 
plasma for T = 7 500°K and frequencies of 2 to 
3 x 1014 sec - 1• [ 22 ] We note that at these energies 
the scattering cross section can hardly be consid­
ered a slowly varying function of energy. [18] As­
suming that, nevertheless, formula (18) remains 
valid, we integrated (17) over the Maxwell distribu­
tion, taking for the cross section u "' 140 7TaVE. 
This approximation for the cross section is in sat­
isfactory agreement with the data of Massey and 
Bur hop, [ 18 ] cf. Fig. 6. 

In Fig. 7 we show the results on the frequency 
dependence of the radiation intensity from a mer­
cury plasma. As normalization value we have 
taken the value of the intensity at v = 3 x 1014 sec-1• 

We note that the experimental data lie above the 
computed values in the region 11 < 2 x 1014 sec-1. 

O I Z 3 + 5 6 7 8 9 10 
£.ev 

FIG. 6. 

JO 

2 2,5 J 
v·to-t~ sec-1 

FIG. 7. 

FIG. 6. Cross section for elastic scattering of electrons 
on Hg atoms. 1 - curve from['"], 2 - proposed approximation. 

FIG. 7. Intensity of radiation in Hg in relative units 1 -
measurement of Rossler,[ 22 ] 2 - present work. 

CONCLUSION 

The proposed method of calculation may be ex­
tended to the case of bremsstrahlung on ions. Thus, 
for example, the account of graphs 1 to 3 of Fig. 3 
for the bremsstrahlung of an electron on a proton 
leads to the Sommerfeld formula. [ 23 ] 

If polarization effects play an important role in 
the scattering, the assumption of a slow variation 
of the scattering amplitude may be wrong. Then 
the graphs 3 to 6 of Fig. 3 may give a significant 
contribution. In particular, if a Ramsauer mini­
mum or a sharply defined maximum is observed 
in the cross section in the energy region of inter­
est, then the contribution of the radiation from the 
atom may evidently become comparable with the 
radiation from the free particle. The authors hope 
to clarify these questions in a future publication. 

We are grateful to L. M. Biberman, B. A. 
Veklenko, A. N. Lagar'kqv, A. Kh. Mnatsakanyan, 
G. E. Norman, and 0. B. Firsov for interesting 
comments. 

1 H. A. Bethe and J. R. Oppenheimer, Phys. Rev. 
70, 451 (1946). 

2 I. M. Shmushkevich, JETP 19, 353 (1949). 
3 R. P. Feynman, Kvantovaya elektrodinamika 

(Quantum Electrodynamics), Mir (1964), p. 143. 
[R. P. Feynman, Quantum Electrodynamics, W. A. 
Benjamin, Inc., N.Y., 1961.] 

4 T. Ohmura and H. Ohmura, Astr. J. 131, 8 
(1960). 

5 0. Firsov and N. Chibisov, JETP 39, 1770 
(1960), Soviet Phys. JETP 12, 1235 (1961). 

6 R. D. Amado, Phys. Rev. 132, 485 (1963). 
7 B. A. Lippman and J. Schwinger, Phys. Rev. 

79, 469 (1950). 
8 N. F. Mott and H. S. W. Massey, The Theory 

of Atomic Collisions, Oxford (1949), Russ. Transl. 
M., 1950. 



198 V. KAS'YANOV and A. STAROSTIN 

9 Jost, Luttinger, and Slotnick, Phys. Rev. 80, 
189 (1950). 

10 A. I. Akhiezer and I. Ya. Pomeranchuk, 
Nekotorye voprosy teorii yadra (Some Problems 
in Nuclear Theory) Gostekhizdat, 1950. 

11 M. M. Klein and K. A. Brueckner, Phys. Rev. 
111, 1115 (1958). 

12 G. N. Watson, A Treatise on the Theory of 
Bessel Functions, Cambridge (1944), Russ. Transl. 
IlL, 1949. 

13 R. G. Breene, Jr. and M. C. Nordone, JOSA 53, 
924 (1963). 

aR. L. Taylor, Avco Research Report 88, June, 
1960. 

15 s. C. Lin and B. Kivel, Phys. Rev. 114, 1026 
(1959). 

16 R. L. Taylor, J. Chern. Phys. 39, 2354 (1963). 
17 Neynaber, Marino, Rothe, and Trujillo, Phys. 

Rev. 129, 2069 (1963). 
18 H. S. W. Massey and E. H. S. Burhop, Elec­

tronic and Ionic Impact Phenomena, Oxford (1952), 
Russ. Transl. IlL, 1958. 

19 R. L. Taylor and B. Kivel, JQSRT 4, 239 (1964). 
20 G. Boldt, Z. Physik 154, 319 and 330 (1959). 
21 L. M. Biberman and G. E. Norman, JQSRT 3, 

221 (1963). 
22 F. Rossler, z. Physik 133, 80 (1952). 
23 A. Sommerfeld, Atomic Structure and Spec­

tral Lines, Russ. Transl. Gostekhizdat, 1956. 

Translated by R. Lipperheide 
40 


