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The dependence of conductivity in semiconductors on external electric and magnetic fields is 
investigated. The conditions producing negative resistance regions on the current-voltage 
characteristic are considered. The relation between negative resistance and runaway elec­
trons is discussed. 

AT low temperatures a nonlinear relationship 
between electric current and the electric field ex­
ists within the lattices of semiconductors even at 
relatively low voltages. The associated phenomena 
have often been studied theoretically. It has been 
noted that regions of negative resistance (negative 
differential conductivity) appear on the current­
voltage characteristics of semiconductors in assoc­
iation with certain mechanisms of carrier scatter­
ing by various impurities and phonons. A. Gure­
vich was the first to mention the occurrence of this 
effect in a plasma; [ 1] it has been studied in semi­
conductors by Bok, [ 2] Adawi, [ 3] and Kogan, [ 4] and 
in the presence of magnetic fields by Kazarinov 
and Skobov[s,s] and by Gurevich and Korenblit. [7] 

In the present work the current-voltage charac­
teristics of semiconductors in high electric and 
magnetic fields are studied. We shall analyze the 
influence of boundary conditions and of the general 
properties of mechanisms of electron scattering 
by a lattice and by impurities on the form of the 
current-voltage characteristics. We shall also 
investigate the conditions under which negative re­
sistance regions appear. The possible spatial in­
homogeneity of samples will not be considered, nor 
shall we investigate the conditions of current insta­
bility associated with the negative resistance. 

One of two different procedures is usually em­
ployed in investigating nonlinear effects; one can 
either solve a kinetic equation, from which a dis­
tribution function is obtained, [ 5• 6• 8• 9] or one can 
assume an equilibrium distribution at an effective 
temperature determined from energy balance which 
is derived from a kinetic equation.C4• 7• 10• 11 ] The 
latter approach -is to some extent equivalent to the 
so-called elementary theory which is widely utilized 
in studying the nonlinear propagation of electro­
magnetic waves in the ionosphere. [ 12 • 13] When 
calculating macroscopic quantities, such as con-

ductivity, mean energy, the Hall field etc., both 
methods yield practically equivalent results. How­
ever, only the first method can be used when the 
electron distribution must be investigated directly. 
We note that when the carrier concentrations are 
large and carrier-carrier scattering is important, 
carrier-distribution equilibrium is established at 
some effective temperature and the first procedure 
coincides essentially with the second. The present 
work is based mainly on the effective temperature 
method as permitting simpler calculations, al­
though the distribution function method will some­
times be employed. 

1. EQUATION FOR THE EFFECTIVE TEMPERA­
TURE OF AN ELECTRON GAS IN ELECTRIC 
FIELDS. GALVANOMAGNETIC EFFECTS 

The electric current in a semiconductor within 
a magnetic field is related to the electric field by 
the equation 

(1.1) 

where h is the i-th component of the electric cur­
rent, u ik are conductivity tensor components, Ek 
is the k-th electric field component; i, k = x, y, z; 
summation is performed over identical subscripts. 
In a coordinate system (1, 2, 3) with the magnetic 
field along the 3 axis, the conductivity tensor com­
ponents for a semiconductor with an isotropic quad­
ratic law of carrier dispersion are given by 

- - s-y2ne2m'f, r 't(e)e'/, df(e) 
O'u-0'2:1-- 3 ~1+(e-r(e)Hjmc)2 de·de, 

8y2ne3H r -r2 (e)e''' df(e) 
0'12 = - 0'21 = - J -de 

3m'l•c " 1 +(e-r(e)H/mc)2 de ' 

8y2ne2m'f, f ( ) ,1 dj(e) d 
0'33 = - 3 ~ '( e 8 2 -a:;: e, 
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(1.2) shall assume that momentum transfer to the lattice 

Here e is the charge, m is the effective mass, E is 
the electron energy, T(E) is the momentum relaxa­
tion time, and f(E) is the symmetric part of the 
carrier distribution function. 

In accordance with the effective temperature 
method we assume a Maxwellian distribution: 

f(e) = Ne-•1 8 I (2:n:m8}''' (1.3) 

where N is the electron concentration. From the 
kinetic equation we obtain the following equation 
for the effective temperature®: 

2N T "" 
jE = O;n(8)E;En = --.-( 1--) I A(e)e'f,e-e/8de. :n:'f,8',,T 8 J 

0 (1.4) 

A(E) is the electron diffusion coefficient in energy 
space and is related to the energy relaxation time; 
T is the equilibrium temperature. 

In a real semiconductor several types of both 
momentum scattering and energy scattering can 
occur simultaneously. Then A(E) and T(E) are 
represented by 

(1.5) 
k 

The summations are performed over all types of 
energy and momentum scattering; in general, i >"' k. 

Our subsequent discussion requires that we de­
termine the energy dependences A(E) and T(E). It 
can be shown that for any type of scattering we 
have 

A(e} =A0 (T)(etT)', 

r and q for different types of scattering are given 
in the accompanying table, where Td is the Debye 
temperature. Electron scattering is assumed to 
occur everywhere except in polar semiconductors. 
The impurities will be assumed to have infinite 
masses and to change only the momentum direction 
of a scattered electron, while the electron energy 
is conserved; this has been denoted by dashes in 
the column for r in the cases of scattering by im­
purities. For scattering by lattice vibrations we 

Objects causing scattering 

Acoustic vibrations, 
Optical vibrations, T < T d 

Optical vibrations, T > T d 

Piezo-acoustic vibrations 
Polar semiconductors, scattering by optical 

vibrations, T > T d 

Neutral impurities 
Charged impurities 
Dipolar impurities 

% 
1 

-'!, 
'!, 

-'!, 

q 

-'!, 
0 
'!, 
'!, 

•;, 
0 

% 
'!, 

will go to the same branch as for energy transfer. 
We note that several scattering mechanisms can, 
in general, participate simultaneously; scattering 
by the lattice is accompanied by energy transfer 
and scattering on impurities is accompanied by 
momentum transfer. 

For the sake of brevity each particular scatter­
ing mechanism will be denoted by its relative 
numerical position in the table; Roman numerals 
from I to V will be used for r, and Arabic numerals 
from 1 to 8 will be used for q. Thus when energy 
transfer occurs through scattering by acoustic 
phonons and momentum transfer occurs through 
scattering by ionized impurities, the scattering 
type will be designated as 17. When electron energy 
for T > Td in ionic crystals is transferred to opti­
cal and acoustic vibrations while momentum is 
transferred to neutral impurities, the scattering 
will be denoted by I, III6 etc. 

We shall now derive the equation for determin­
ing the temperature. It is assumed that a potential 
difference along the z axis generates a given static 
electric field Ez. We must now determine the de­
pendence of jz on Ez. The other electric field and 
electric current components must be found as func­
tions of Ez from additional conditions (which we 
shall call boundary conditions) corresponding to 
the experimental setup. 

We shall discuss four cases. 
A. Consider a semiconductor in the form of a 

rectangular parallelepiped with its longest sides 
parallel to the z axis (Fig. 1A). Current does not 
flow through the faces which are perpendicular to 
the x and y axes. The electric fields Ex and Ey 
are derived from the conditions 

fx = OxxEx + UxyEy + f1xzEz = 0, 

jy = UyxEx + UyyEy + UyzEz = 0. (1. 7) 

Representing the remaining components of u ik by 
a 11 , a 12 , and a 13 , this equation yields 

Ex 012013 sin a 
Ez = (ou2 + 0122)cos2 a+ Ou033 sin2 ~' 

Ey (o122-ou(o33- ou)]sinacosa 

Ez = (ou2 + 0122)cos2 a+ Ou033 sin2 a · (1. 8) 

Here a is the angle between the magnetic field and 
the z axis. It is easily seen that Ex is an odd func­
tion of the magnetic field, while Ey is an even func­
tion. Ex is called the Hall field, and Ey is the field 
of the longitudinal- transverse magnetoresistive 
effect. 

The scalar product in the left-hand side of (1.4) 
will now be represented by Ez· From the boundary 
conditions we have 
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(1.9) 

Substituting Ex and Ey from (1.8) into (1.9), we ob­
tain 

(1.10) 
where 

0'(6) = O'A(6), 

where p =A, B, C, D. 
Equation (1.17) in conjunction with the formula 

relating the current to the field, 

(1.18) 
O'A(6) = 0'33( O't22 + O'u2) 

( O'u2 + 0'122) cos2 a+ O'uO'aa sin2 a 
(1.11) determine in parametric form the current-voltage 

characteristic of a sample when written as 
B. Here the boundary conditions are h = 0 and 

Ey = 0, which can be realized by a semiconductor 
in the form of a plate having its faces perpendicular 
to the x axis (Fig. 1B). The corresponding formu­
las are 

E,. Gtz . 
-=-sma; 
E. O'u 

(1.12) 

j E is obtained from (1.10), where u (®) is represen­
ted by 

_ ( )_(au2+a122)sin2 a+auO'aacos2 a (113) 
cr(9)- CJB 6 - O"u · · 

For a = 1r/2 and a = 0 we will have uB(e) = u A(®). 
C. Here the boundary conditions Ex = 0 and 

jy = 0 represent a semiconducting plate with its 
faces perpendicular to they axis (Fig. 1C). By 
analogy with the foregoing, we obtain 

( O'u - 0'33) sin a cos a 
O'u cos2 a + 0'33 sin2 a ' 

jc= crc(8)E., (1.14) 

e O'uO'aa 
0' ( ) = -....___,,..-------=--

c O"u cos2 a + 0"33 sin2 a 
(1.15) 

Here and subsequently the subscript z of j has been 
omitted. 

D. The conditions Ex = 0 and Ey = 0 are realized 
for an unbounded sample; we then have 

aD( e) = cru sin2 a+ aaa cos2 a, jD = crD(8)E.. (1.16) 

For a = 1r /2 this case has been considered in [s,s]. 
Thus, on the basis of (1.5) and (1.6), as well as 

(1.11), (1.13), (1.15), and (1.16), in all four cases 
the temperature equation becomes 

y 

y 

z 
a 

The dimensionless temperature u = ®/T serves as 
the parameter. It follows from the expressions for 
up(u) that the current-voltage characteristic de­
pends greatly on the boundary conditions. 

2. EFFECTIVE TEMPERATURE OF AN ELEC­
TRON GAS AND GALVANOMAGNETIC EFFECTS 
IN HIGH MAGNETIC FIELDS 

In this section we shall consider the limiting 
case of high magnetic fields subject to the inequal­
ity (erH/mc) 2 » 1. Asymptotic expressions for the 
conductivity tensor components are 

eNc 
O"t2=-­

n' 

4 2N oo 

a3~-= e ~ e'"-r(e)e-•18 de. (2.1) 
3 ynm@'f, 0 

For qualitative investigations u 33 can be approxi­
mated roughly by 

aaa = __!!!~ [ 2,; {r(5/z + q,)-rohUqk}-1T1. 
3 y:n:m " 

(2.1') 

When only one scattering mechanism is important, 
i.e., when only a single term need be retained in 
(2 .1 '), this formula is exact. 

!/ 

FIG. 1 
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We shall assume that in the given range of elec­
. tric and magnetic fields only one scattering mech­
anism is important, and shall derive the tempera­
ture and the galvanomagnetic properties of a semi­
conductor for the different boundary conditions. 

A. Substituting (2.1) into (1.8) and (1.11), and 
employing (1.1 7), we obtain 

eH'to 
uq sin a, 

me 

Eb= (1- aq)sin aoos a 
E. eos2 a + aq sin2 a ' 

cr(u)= 4r(s/zf_[}_~ e2Nro uq. (2.2) 
3l':rt ( cos2 a + aq sin2 a) m 

Here aq = 16r(5/2 + q) r(5/2- q)/9n; this quantity 
has been tabulated in [ 14] . The equation for u has 
the form 

ur-q-l (u- 1) = [8 A2; 

The expression for a (u) and the equation for u are 
obtained from (2.2) and (2.3) after setting a = 0 . 
We note that under the given hypotheses the ratio 
Ey/Ez in the last case can be of the order of unity 
or even considerably larger. 

D. For the case tan 2a » (eHT 0uq/mc) 2 » 1 
(a ::::o n/2) all results are obtained from (2.6) after 
setting Cl' = 1r /2. 

D'. For the case tan2 a « (eHT0uq/mc) 2 » 1 we 
obtain 

4r(5/2 + q) e2Nro 2 cr(u) = . uq cos a. 
3-y:rt m 

(2. 8) 

The equation for u coincides with (2.3) after &},_ is 
replaced by &b, = Ei /Efy: 

Er·2 = 3r (3/z + r) mAo 
2r(5/2 + q) e2-roT·cos2 a 

(2.8a) 

It is interesting to note that for high magnetic 
fields cases C and D are realized in intrinsic 

EA2 = 3r (3/2 + r) ( cos2 a+ aq sin2 a) 
2r(5/2 + q) 

mAo semiconductors also for the boundary conditions 
e2-roT · A and B, because, as shown in[ 9], the Hall field in 

(2.3) 

The formulas (2.2) and (2.3) completely determine 
the dependence of the galvanomagnetic properties 
on electric and magnetic fields. 

B. We have here 

Ex 3l'n e-roH . --uqsma 
-E~- 4r(5/2- q) me ' 

) - 3l'n(sin2a+aqcos2 a} e2N-rouq (2.4) 
a(u- 4r(5/2-q) m · 

In this case the equation for u coincides with (2.3) 
when we replace &},_ by &k, where 

E 2 = 8r(5/2- q) mAo (2.4a) 
B 3:rtr(3/2 + r) (sin2 a+ aq cos2 a) e21:0T · 

In cases C and D the results exhibit angular de­
pendence. 

C. For the case tan2a » (eT 0Huq/mc)-2 « 1 
we have 

Ey 
-= -cota, 
Ez 

The equation for u is 

ft 2- E.Z 
c - Eci' 

ur+q-l(u- 1) = &iJ ; 
E 2 _ 3r (3/z + r) H2-roAo . 2 

c - 2r (s/a-q) e2me2T sm a. (2.6) 

C'. For the case tan2 a « (eHT 0uq/mc)-2 « 1 
(a ::::o O) we have 

Eu _ r( 5/2 + q) ( eH-ro ) 2 • 
-E -- r(s/ ) --uq sma. 

z 2- q me 
(2. 7) 

an intrinsic semiconductor approaches zero as H 
approaches infinity. 

The foregoing formulas show that the angle be­
tween the magnetic field and the current is an im­
portant factor in determining the electronic tem­
perature. In cases A, B, C', and D' the temperatu:re 
is of the same order as in the absence of a mag­
netic field and does not depend on the magnitude of 
the latter. (In the absence of a magnetic field the 
temperature is obtained from the formulas of 
case A with a = 0.) Cases C and Dare different, 
involving strong anisotropy. For u » 1 it follows 
from (2.3) and (2.6) that 

uo Uc ( eH-ro )-2(r+qJ 
--~-""-~~-~,...., --uq ~1 for r+q>O, (2.9) 
ur) ud me 

which implies that in these cases the presence of a 
magnetic field results in strong cooling of the elec­
tron gas. 

We note that in case C cooling by the magnetic 
field occurs for all angles except in a narrow cone 
with an aperture of the order ~ (eHTou~/mc)-1 

around the direction n = 0. In case D the magnetic 
field cools the electron gas within a narrow cone 
having an aperture of the order (eHT 0u~/mc)-1 

around the direction n ::::o 1r /2. 

3. THE CURRENT-VOLTAGE CHARACTERISTIC 
AND NEGATIVE RESISTANCE 

The most prominent scattering mechanism 
within some range of electric and magnetic fields 
and lattice temperatures will be called the principal 
mechanism; all other scattering mechanisms will 
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be designated as secondary. The current-voltage 
characteristic for cases A, B, C', and D' can be put 
into the form 

Jp2=ur+q-1(u-1) +(j)J(u), 

iff P2 = ur-q-1 (u- 1) + qJiff (u). (3.1) 

In this equation the exponents r and q pertain to the 
principal scattering mechanism; q7 J and q7 iff repre­
sent the effects of the secondary mechanisms. Jp 
denotes the quantity j/jp (p =A, B, C', D'): 

. 2 _ Sf (3/2 + r) f(5/2 + q) eWroAo 
]A - 3rr(cos2 a+ aq sin2 a)mT ' 

. 2 _ 3f (3/2 + r) (sin2 a+ aq cos2 a) e2NroA0 
7s - 2f(5h- q)mT 

(3.1a) 

It is interesting that the current-voltage character­
istic in the absence of a magnetic field is also 
represented by (3.1), but with a = 0 in the formulas 
for jp and iff p· 

Neglecting the secondary scattering mechan­
isms, Eq. (3.1) leads to the following asymptotic 
dependences of u and J on iff: 
for u- 1 « 1 

(3.2) 

for u » 1 

llp = iff p2(r-q), J p = iff p(r+q)(r-q), (3.3) 

The current-voltage characteristic for cases 
C' and D' is 

Js2 = ur-q-1(u- 1) + 'IJJ(u), 

iff s2 = ur+q-1 ( u -- 1) + '!Jil' ( U) . (3.4) 

Here <fJJ and 1/J iff represent the contributions of the 
secondary scattering mechanisms; s = C, D, 

j 
1--s- . ' 

]s 

in=ic for a=rr/2. (3 .4a) 

For the asymptotic behavior in cases C and D 
with u- 1 « 1 we have formulas analogous to (3.2), 
while for u » 1 we obtain 

(3.5) 

In deriving (3.-2) and (3.5) the secondary mechan­
isms were neglected, and it was assumed that 
r±q7c0. 

It can easily be seen that when secondary scat­
tering mechanisms are neglected (3.4) becomes 

(3.1) if J and iff are exchanged. It follows that if 
J p = F( iffp), then J s = F' ( fff s), where F' is the in­
verse of the function F. 

In our subsequent discussion the differential 
conductivity of a sample is a very essential quan­
tity: 

dl p,s dl p,.J du 
T)p,s = -d<i> = d<i> /d . 

0 p,s 0 p,s U 
(3.6) 

For the current-voltage characteristic repre­
sented by (3.1), which we shall hereinafter desig­
nate as type A, we have 

T)p = zr-< ~: [ u- ( 1-r ~ J J / [ u- ( 1-r 1 q) J . 
(3. 7) 

For the characteristic (3 .4), designated as type B, 

we have 

T)s = u< +: [ u- ( 1- r 1 q)] j [ u- ( 1- r :q)] · 
(3. 8) 

Equations (3. 7) and (3. 8) yield the obvious relations 

T)pT)s = 1, sign T)p = sign T)s. (3. 7') 

An important role will be played by the tem­
peratures 

u1, 2 = 1 - 1 I (r + q), (3.9) 

at which the signs of Tip and 17 s are reversed; of 
course, these points have a physical meaning only 
when u 1, 2 > 1. The currents and fields correspond­
ing to these temperatures are given by the formulas 

1' [ ,1 ](r+q-1)/2 
J p; 1,2 = iff s; 1,2 = 1 - -- · 

lr+ ql'h r+ q ' 

1 [ 1 ](r-q-1)/2 
fS p; 1,2 =Is; 1,2 = I I'/ 1----=- . (3.10) 

r+q ' r+q 

It follows from the foregoing that Tip vanishes when 
Tis becomes infinite, and conversely, Tis vanishes 
when Tip becomes infinite. 

We shall now consider the effect of a seco1;.dary 
scattering mechanism. It follows from (1.19) that 
for large u we have 

(3.11) 

The only important secondary mechanisms for our 
purposes will be those for which y 1, y 2, y 3, y 4 > 0, 
since only these can insure a state with a positive 
differential current-voltage characteristic (a sta­
tionary state) at very high temperatures. The table 
shows that secondary scattering mechanisms of this 
type exist in all kinds of semiconductors. 
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We can consider either (3.1) or (3.4); we choose 
the former. When r- q > 0, a secondary mechan­
ism can begin to be significant for large u only if 
Yt > r- q. When r- q ::::: 0, then for u- <X) the first 
term in the given formula is bounded and the 
secondary mechanism sooner or later becomes the 
principal mechanism. 

The order of magnitude of the temperature at 
which a secondary mechanism becomes important 
can be estimated by equating the two terms in 
(3.1) and (3.4) [ur +q-1 (u- 1) = CfJ<W(u)]; it is then 
easy to evaluate the corresponding fields and cur­
rents. The temperature, field, and current at which 
the secondary mechanism begins to be important 
will be denoted by primes. 

It follows from (3. 7) and (3.8) that the sign of 
the differential conductivity is governed by the 
quantities r- q and r + q. In virtue of (3. 7') the 
secondary scattering mechanism is here neglected. 

We shall now consider individual special cases. 
1. r- q > 0, r + q > 0 or, equivalently, r > 0, 

- r < q < r. These conditions are satisfied by the 
scattering mechanisms 11, I2, I3, I6, I7, IS, Ill, 
II6, IIS, IV6. It follows from (3. 7) and (3.8) that 
the differential conductivity is positive, because 
the dimensionless temperatures ut, 2 at which the 
sign of the differential conductivity is reversed 
are smaller than unity, whereas ut, 2 ?: 1 is re­
quired for physical meaning (the temperature of 
the electron gas cannot be lower than the lattice 
temperature), and for u?: 1, 1Jp and 7Js are posi­
tive. The temperature of the electron gas in this 
case can also rise monotonically as the electric 
field increases. 

2. r- q = 0, r + q > 0 (r = q > 0). These condi­
tions are satisfied by the scattering mechanisms 
I7, IV 4, IVS. All relations can here be obtained 
explicitly. For the type A current-voltage charac­
teristic we have 

- <W p {-1- 2q<W_!!__} > 0 
Yjp - ( 1- <W p2) q <W p + 1- <W p2 . 

( 3 .12) 

It follows herefrom that up, 1Jp- <X) when <Wp - 1. 
At sufficiently large values of up a secondary 

scattering mechanism begins to participate, leading 
to finite values of up, Jp, and 7Jp for finite <Wp· 
However, if the secondary mechanism begins to 
participate at very high temperatures the electron 
gas can become very highly heated in relatively 
low fields. 

In the case of the type B current-voltage char­
acteristic it is convenient to represent the tem­
perature and field in terms of the current: 

1 
Us= 1'- ]82 , (3.13) 

It follows therefrom that for <Ws -<X) the quantity 
Us ~ (gs l/ q approaches infinity, while the current 
approaches unity according to J s ~ 1 - 1/ 2 <Ws -l/q. 

3. r + q > 0, r- q < 0 (q > 0, -q < r < q). We 
now have the following relations: 

( > 0 
dup I 
--, Y)pi=±oo 
d<W p l < 0 

for <W P > [fj pi 

for <W P = & Pi· 

for [fj P < <W pi (3.14) 

It is seen from (3.3) that when &p- 0 we have 
Jp- <X) and Up- <X) (Fig. 2, curve III). We can ex­
pect that at some value u' a secondary scattering 
mechanism will begin to operate, leading to finite 
current and temperature in finite electric fields. 

The shape of the current-voltage characteristic 
depends considerably on whether u' is smaller or 
larger than ut. If u' < ut a negative resistance 
region is not realized (Fig. 2, curve I), and the 
current-voltage characteristic is a monotonic func­
tion of the field. When u' > ut (Fig. 2, curve II) a 
negative resistance region does appear on the 
current-voltage curve, which is S-shaped. 

In the case of the type B current-voltage char­
acteristic the sign of 7J s varies as follows: 

Y)s> 0 for [fj > (g si, Y)s = 0 for [fj = [fj si, 

'lls<O for [fj < [fj si· ( 3 .15) 

It follows from (3.3) that for (g- <X) we have 
u -<X) and J - 0, while the temperature increases 
monotonically with the field. A type B current­
voltage characteristic is shown in Fig. 3, where 
curve III corresponds to the absence of a secondary 
mechanism. 

Two cases can exist here, as for type A, when a 
secondary mechanism operates. For u' < lit the 
characteristic is a monotonically increasing func­
tion of the field (Fig. 3, curve I). For u' > u1 a 
negative resistance region appears and the curve 
becomes N-shaped (Fig. 3, curve II). 

It is interesting that for the transition of the 
type A curve from positive to negative differential 
conductivity, at the transition point from 7J > 0 to 
7J < 0 we find that 7J becomes ±<X>, whereas for type 
B we find that 7J vanishes. 

4. r + q = 0, r- q < 0 (r < 0, q = -r > 0). These 
relations are satisfied by scattering mechanisms 
III3 and IIIS. The type A current-voltage charac­
teristic is represented by 

(3.16) 

For u' < ut in the presence of a "restraining" 
mechanism, J as a function of [fj has the form 
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represented by curve I in Fig. 2, while for u' > u 1 

it is represented by curve II. For &p- 0 we have 
Jp -1 (Fig. 2, curve IV) and u ~ ct-1/q. 

The type B current-voltage curve is represented 
by 

(3 .1 7) 

The temperature of the electron gas is given by 
(3.12). In this case the current-voltage curve has 
the same form as in case 3, except that in the ab­
sence of a restraining mechanism the current 
vanishes rigorously when &s = 1 (Fig. 3, curve IV). 

J 

J 

I 
I 

~ 
G I f t" 

FIG. 2 FIG. 3 

5. r- q < 0, r +q < 0 (r < 0, r < q <- r). This 
corresponds to scattering mechanism III6, i.e., 
q = 0. The current is governed by Ohm's law; 
u- oo for ·IE- 0. If we had q ""0, then in the ab­
sence of a secondary scattering mechanism the 
current-voltage characteristic would possess 
points with both 1) = 0 and 1) = ±oo. 

The remaining three possible cases are of purely 
academic interest, since they do not represent any 
real scattering objects. An investigation, com­
pletely analogous to the foregoing discussion, shows 
that for r = q = 0 Ohm's law applies, while in the 
cases of r - q > 0, r + q = 0 and r - q > 0, r + q < 0 
the type A and type B characteristics coincide with 
the type B and type A characteristics of cases 2 
and 3. 

It has thus far been assumed that the electron 
concentration does not depend on the electron gas 
temperature. However, as has been shown in [ 5] 

and in our earlier workL 15J, if impact ionization 
plays an important part the electron concentration 
is governed by the effective temperature of the 
electron gas. We shall assume, for simplicity, 
that the principal process, the inverse of impact 
ionization, is a triple collision. The formula for 
the concentration is then 

N(u) = Noe-Otu. (3 .18) 

In deriving this equation it was assumed that 6 (the 

activation energy in units of T) is much greater 
than u and therefore much greater than unity. 

Let us consider the influence of impact ioniza­
tion on negative resistance. The equations of the 
current-voltage characteristic taking impact ioniza­
tion into account are obtained by inserting the addi­
tional factor e- 26 /u in the right-hand side of the 
expression for J 2• We note that the relations (3. 7') 
then become invalid. As already shown, negative 
resistance appears when the condition r - q < 0 
is fulfilled. 

Impact ionization thus does not affect the occur­
rence of negative resistance in a type A curve, 
since in this case 1Jp has the same sign as dIE /du, 
but the latter is not affected by impact ionization. 
For a type B curve 1Js has the same sign as dJ/du; 
a direct calculation shows that this quantity will 
always exceed zero when impact ionization is taken 
into account. Thus the existence of an impact 
ionization excludes negative resistance from the 
current-voltage characteristic of type B. This re­
sult is explained physically by the fact that a cur­
rent increase due to impact ionization overcomes 
the current decrease in a growing electric field as 
a result of electron mobility. 

We have confined ourselves to investigating the 
dependence of the current-voltage characteristic 
and of the electron gas temperature on the electric 
field. We can also employ the formulas given in 
the preceding section to investigate similarly the 
conductivity tensor CTik' the conductivity u, and the 
fields Ex _and Ey in a sample. 

4. ON THE RELATIONSHIP BETWEEN NEGATIVE 
RESISTANCE AND ELECTRON RUNAWAY 

The shape of the current-voltage characteristic 
is closely related to the electron energy distribu­
tion. The effective temperature method cannot be 
used to investigate this relationship; the explicit 
form of the distribution function is now required. 
From the kinetic equation for the distribution we 
obtain[to] 

"' 
f(w) = C exp{- ~ dw 

0 

X [1 + 2e2T 
3m 

wr(w)[EZ + ( er(w)H/mc)2(Eh)2J J-1) 
A ( w) [ 1 + ( er ( w) H /me) 2] f ' 

(4.1) 

where w = E/T, h = H/H, C is the normalizing con­
stant, and A(w) and T(w) are determined from (1.5) 
and (1.6). 

We introduce the concept of "electron runaway" 
and use the moments Mk of the distribution: 
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"" M,. = ~ wll.j(w)dw, k >- 1. 
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(4.2) 
f(w),..., w-~. = 2e2T-ro (Eh) 2 

£ 3mAo · 
(4.4) 

0 

It is easily seen that all macroscopic quantities­
the conductivity tensor, the mean energy etc.-can 
be reduced to this type of integral. 

Equation (4.1) shows that the distribution is 
greatly dependent on the character of electron scat­
tering. We shall follow Levinson[ts] in our classi­
fication of the scattering mechanisms. A scattering 
mechanism is called completely restraining if 
Mk < oo for all k > - 1. A mechanism for which 
Mk < oo with -1 < k < k' and Mk = oo with k =::: k' is 
called partially restraining. The value of k' de­
pends on the external fields and the lattice tem­
perature. The scattering mechanism is called 
completely nonrestraining if all moments Mk = oo 

for all k. It will be shown that this classification 
does not exhaust all possible cases. Electrons will 
be designated as "runaway" if the moments Mk 
diverge beginning with some value k'. 

We shall assume that only one scattering mech­
anism is important in the considered electric and 
magnetic fields. In high magnetic fields we have 
(erH/mc) 2 » 1, and the distribution is given by 

(Eh)2-r )]-!} +A~wi-r+q . (4.3) 

In view of the fact that Ex ~ H, for an arbitrary 
distribution and for the boundary conditions A and 
B[to] the first term in the square brackets of (4.3) 
is not, as a general rule, small compared with the 
second term. We note that the distribution in the 
absence of a magnetic field is obtained from (4.3) 
by dropping the first term within the square brac­
kets, and substituting Ez for E ·h. On the other 
hand, when E 1 H only the first term remains 
within the square brackets. 

We shall now consider some special cases. 
1. r + q > 0, r- q < 0. It follows from (4.1) and 

(4.3) that the scattering mechanism is completely 
restraining both in the absence and in the presence 
of a magnetic field. Thus the current-voltage char­
acteristic with positive differential conductivity 
corresponds to a completely restraining scattering 
mechanism. 

2. r + q > 0, r- q = 0. For the boundary condi­
tions A and B we obtain different results, depending 
on whether E and H are, or are not, mutually per­
pendicular. When E · h ¢ 0, then with w » 1 the 
second term in the square brackets of (4.3) is the 
principal term. The asymptotic form of the dis­
tribution for large w is 

For E · h ¢ 0 the given scattering mechanism is ob­
viously partially restraining, with k' = ~ - 1. If 
E · h = 0 the distribution is 

{ 
w [ 2Tmc2E2 J-1} ) f(w)=Cexp -~ dw 1+ w1-r-q . (4.5 
) 3H2Ao'to 
0 

It might seem at first glance that we have here a 
completely restraining scattering mechanism, since 
the asymptotic distribution for large w is 

{ 3wr+qH2Ao'to } (4 .5,) 
j(w)=Cexp -2(r+q)Tmc2E2 

and all moments of the distribution are finite. In 
actuality this is not the case. We have for the elec­
tric field E 2 R~ Ei, since it follows from (1.8) and 
(1.12) that in high magnetic fields Ex » Ey, Ez. 

In high magnetic fields we must therefore re­
place E2 by Ei in (4.5). The Hall field Ei will be 
expressed in terms of the initial parameters Ez 
and H by means of (1.8) or (1.12).[ 10] Specifically, 
let us consider scattering by piezo-acoustic vibra­
tions, for which r + q = 1. The distribution is here 
Maxwellian with the effective temperature 

_ 2Tmc2 E 2 

u ~ 1 + 3H2Ao'to x • 

Using (1.8) or (1.12) in conjunction with (1.19Y to 
express Ei in terms of u and making a substitution 
in (2.3), we finally obtain 

u = [ 1 _ 3~~~:0 E2 ri. 
The distribution function is now 

j(w) = C exp{- ( 1- 3;:~:0 E2 ) w }. (4.6) 

All moments of this distribution are finite for 
E 2 < 8mA0/37re 2Tr0 and all moments are infinite for 
E2 =::: 8mA0/37re2Tr0• This is a new type of electron 
runaway, caused by the presence of a magnetic field 
and the corresponding boundary conditions. 

It is easily seen that the distribution (4.5') ob­
tained on the basis of the hypothesis 

(4. 7) 

has no meaning. It can be shown that similar re­
sults are obtained for r + q "' 1. 

For the boundary conditions C and D a similar 
examination shows that when E · h ¢ 0 the given 
scattering mechanism is partially restraining, and 
that when E · h = 0 it is completely restraining. It 
follows from the foregoing that the asymptotic re­
lations Tip- oo for &p- 1 and Tis- 0 for [g s- oo 
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are associated with the partial "restraint" of elec­
trons. 

3. r- q < 0, r + q > 0. In this case we proceed 
as for case 1. For the boundary conditions A, B, 
and C with E · h "" 0 the scattering mechanism is 
absolutely nonrestraining, while for E · h = 0 it is 
absolutely restraining. 

4. r- q < 0, r + q > 0. When E · h ""0 the scat­
tering mechanism is nonrestraining, while for 
E · h = 0 it is partially restraining. 

We note that in cases 3 and 4, as has already 
been shown, negative resistance is observed, in 
association with the condition r- q < 0. On the 
other hand, this relation causes electron runaway 
when E·h ""0. 

Therefore, when total electron runaway occurs 
a semiconductor can have a current-voltage char­
acteristic, including negative resistance, which is 
either N-shaped or S-shaped. The latter occurs only 
in the presence of a magnetic field and in the ab­
sence of a Hall field. These conditions can be real­
ized for a selected semiconductor with suitable 
boundary conditions. 

The physical reason for the negative resistance 
is the reduced probability that electrons will be 
scattered as their energy increases in the case of 
either momentum transfer or energy transfer. In 
the first case, although the electron gas tempera­
ture increases with the energy, the conductivity 
diminishes as the temperature rises. In the second 
case the temperature decreases as the field grows, 
whereas the conductivity increases with the tem­
perature. If the probability of electron scattering 
accompanied by energy loss or momentum loss de­
creases sufficiently rapidly as the energy rises, 
the current also decreases as the field increases. 

The author is indebted to M. I. Kaganov for a 
discussion of the results, and to I. B. Levinson for 
making his work ltG] available before publication. 
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