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Formulas describing the energy loss of slow protons in a degenerate plasma are derived. 
Two plasma models are considered: that of an ideal degenerate gas and that of a Fermi 
liquid. The results are in satisfactory agreement with the experimental data. 

1. A number of workers (see [1]) have studied the grrr:J 

energy loss of slow ions ( ~ 10 keV) of light 2 

elements in thin metallic films. The experimental 
results are satisfactorily described by the linear 
relation: 

-dEidx = Av. (1) 

As we will show below, this dependence can be 
obtained theoretically by assuming that the veloc­
ity of the incident particle is much less than the 
Fermi velocity of the electrons in the metal, 
v « v 0• 

Slowing down of the particles can be produced 
by polarization losses in the electron plasma and 
also by collision with lattice atoms. However, it 
has been observed [1] that the coefficient A in 
formula (1) is the same for protons and deuterons, 
i.e., it does not depend on the mass of the moving 
particle. This fact indicates that collisions with 
lattice atoms apparently do not play an important 
role, and we can assume that the slowing down is 
produced only by losses to electrons. 

The energy loss of a slow charged particle 
( v « v0 ) in a degenerate electron gas was first 
discussed by Fermi and Teller [2] who obtained 
the formula 

dE 2e4m2 liv0 
--=v--ln-

dx 3nli3 e2 ' 
(2) 

where m is the electron mass and v0 is the 
velocity at the Fermi surface. This formula was 
obtained in the Born approximation ( e 2/1iv0 « 1) 
and is inapplicable to real metals, where e 2/1iv0 

turns out to be greater than unity. 
In the present paper we have attempted to re­

fine formula (2) and have shown that a systematic 
treatment of the polarization of the medium in 
terms of a gas model leads to expressions which 
are in satisfactory agreement with experimental 
results [1] (see the figure). Since the applicability 
of the gas model itself becomes doubtful for 
eo/1iv0 -;:, 1, we have also attempted in this work to 

•Sn 

2 J 4 rr: 

discuss the electrons in metals as a Fermi liquid. 
It turns out that this treatment leads qualitatively 
to the same expression for dE/dx as the gas 
model. 

2. The results obtained below for v « v0 can 
be written in the form 

dE 2 e'm2 e2 
--=v---li3 g{a), a=--. (3) 

dx 3n ftvo 

For a « 1 we have g (a) £< ln a- 1 and Eq. (3) 
becomes the Fermi-Teller formula, Eq. (2). In 
the opposite extreme case the function g (a) 
turns out to be 

a~i, (4) 

in which case 
dE n Po2 

--=v-~--
dx 3/i' Po= mvo. (5) 

Expressing the Fermi limiting momentum Po in 
terms of the density, we can write formula (5) in 
the form 

-dE I dx = v (n1 I 3) '!•fin'!. = 10 vlin'l•. (6) 

This simple formula is in satisfactory agreement 
with experiments (see the figure) and it is appro­
priate to give its qualitative derivation here. 

If we start by assuming binary collisions, the 
rate of energy loss of an ion to electrons is given 
by the relation 

-~!=ml ~dp'f(p') lv-!l(v-~)crtr,, (7) 
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r . da 
C1tr = J (1- COS 8) dQ dQ, (8) 

where f ( p') is the electron distribution function 

J f ( p') dp' = n. Formula (2) is obtained from (7) 
if we take Utr to be the Coulomb cross section 

e' 1 1 
a= 4:rt- In- (9) 

m2 jv-p'lml 4 Bmin • 

Here In() ~in is the "Coulomb logarithm." 
The Debye-Hiickel radius for a degenerate 

plasma is equal to 

( an )-'I• ( mvN3 )''• d = 4:rteL- = ---
OIJ. 4:rtne2 

(10) 

(fl = mvij;2 is the chemical potential), and there­
fore Fermi and Teller assume 

Bmin = Pmin I Pmax = }, I d ~ y e2 I fivo ~ 1, (11) 

which also leads to formula (2) if v <~ v0• From 
this it is evident that the second extreme case 
e 2/tiv0 » 1 corresponds formally to small values 
of d. Here the screened Coulomb potential for 
the interaction of electrons with an ion will have 
the form of a 6-function: 

-e2 
Uen· = lim-~e-rld =- 4:rte2d26(r). 

d-+O r 
(12) 

For this potential the elastic scattering cross 
section in the Born approximation, in contrast to 
Eq. (9), turns out to be 

/i, 
Ao=-

Po 
(13) 

For the potential (12) the Born approximation 
turns out to be applicable in spite of the condition 
e2/l'ivo » 1. 

As a matter of fact, potential (12) can be con­
sidered as a spherically symmetric well of the 
form 

{ -Uo 
Ueff = 0 

r<d 
r>d 

The scattering cross section of slow particles 
(A. » d) in such a potential is 

(14) 

da I dQ =I (tanxd- xd) I xl 2, x = 1/2mUo I 1i (15) 

and for d - 0 ( d = V 6me2djti « 1) we find 

da I dQ = (x3d3 I 3x)2 = d2(xd) 4 /9, (16) 

which agrees with the Born formula (13). 
Since du/drl does not depend on angle, the 

transport cross section (8) will be equal to the 
total cross section: 

(17) 

Taking Utr out from under the integral sign in 
formula (7), for v « v0 and for a Fermi distribu­
tion we obtain formula ( 5): 

(18) 

It must be noted that for e 2/liv0 » 1 the poten­
tial energy due to interaction of the electrons ex­
ceeds their kinetic energy ( e 2n 1/ 3 » mv~) and it 
is necessary to take into account particle corre­
lations. We will show later, however, that taking 
into account correlations in terms of the Fermi 
liquid model does not change the result obtained 
[formula (18)]. 

3. If we consider the plasma as a continuous 
medium, the energy loss of a slow particle can be 
calculated from the formula (see [3] ) 

dE ie2 \ (kv) dk 
- dx = 2:rt2vJ k2e(k,kv) 

t 00 

= 2e2 ~ ydy~ 
:rt 0 

kdk 
82 (k, O) Im e(k, kv). (19) 

Here y =cos (k, v), and E(k, w) is the longitud­
inal dielectric constant. It is assumed that the real 
part of E is an even function of w and the imag­
inary part is an odd function. Furthermore, since 
the partie le is assumed to be quite slow, ( v - 0 ) , 
in the denominator of E we can place w = k · v = 0. 

The electrons in a metal can be approximately 
considered as a degenerate electron gas with a 
temperature equal to zero. If we use the classical 
kinetic equation, we obtain for E: ( k, w) the well 
known expression 

4:rte2 (" dp ( of ) 
e(k,w) = 1+k2 J w-kp/m k f)p . 

Substituting in this the Fermi distribution, we 
find: 

4a ( w ) 
e(w, k) = 1 + :rtk2'Ao2 fJ kvo ; 

s I 1-s I s rJ(s) = 1 +--In -- + i:rt--
2 1+s 2' 

0) 

s=-­
kvo 

(20) 

(21) 

where a= eo/tiv0 and s = w/kv0, and from this, 
4a 2a v 

e(k,O) = 1 +-k2' 2 , Ime(k,kv) = ---y, (22) 
:rt "'0 k2A.o2 Vo 

where y = cos ( k, v) and v is the velocity of the 
particle whose energy loss we wish to determine. 
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Substituting (22) into (19), we obtain 

dE 2m2e4 

- dx = v 3:n:fi3 gct(a), 

hmax 
1 2dk 

where gcl(a):= ~ k(1+4a/n:k2J..o2)2' (23) 

Here, in accordance with (19), it would be neces­
sary to assume that kmax = oo, but in this case 
the integral turns out to be divergent. The cor­
rect cutoff of this integral can be obtained only on 
the basis of a systematic quantum-mechanical 
treatment. 

For this purpose it is necessary to use the 
quantum-mechanical kinetic equation, from which, 
in contrast to the classical formula (20), we ob­
tain for E (k, w) the well known expression (see 
for example [3] ) 

e(k w) = 1 + 4n:e2 I dp 
' /ik2 J w- kp/m 

which becomes identical to Eq. (20) only in the 
limit nk «Po (or k- 0). 

(24) 

The imaginary part Im E ( k, w) arises from a 
half-circuit of the pole w - k · p/m = 0, which in 
the limiting case w- 0 being discussed lies at 
Pii = mw/k - 0. For this point to fall on one of 
the Fermi spheres f ( p ± nk/2 ), it is necessary 
that 

lik I 2 ::::;;;; Po or k ::::;;;; kmax = 2 I l..o. 

Obviously this upper limit must also be substi­
tuted in (23), which leads to the expression 

(25) 

~ ~ a+n a 
gcl(a)=2J s(1+a/n:£2)2=ln-a-+ a+n -1, 

0 

(26) 

For a « 1 we have 
n/e 

g;cl (a)= ln-+ O(a), 
a 

(27) 

which corresponds to the Fermi-Teller formula, 
Eq. (2), and for a » 1 

gel (a) = rt2 I 2a2 -!-0(1 I a3), (28) 

which agrees with (4). A plot of the function 
gel (a) (2) is ~iven in the figure. 

4. The results obtained above can be called 
semiclassical, since on the one hand they use the 
quantum-mechanical Fermi distribution and on 
the other hand they use for E the classical for­
mula (20). 

These results can be somewhat refined if we 
obtain E ( k, w) from the quantum-mechanical 
formula (24). Substituting in (24) a Fermi distri­
bution, we find (see also [3]): 

e(k, w) = 1 + ~{ 1 + _1_[( 1- ( w + /ik2/2m )2) 
nk2A.o2 2kA.0 kvo 

w + lik2/2m + kv0 ( ( w -fik2j2m )2) Xln - 1- · 
w + lik2/2m- kv0 kvo 

X ln _ w -lik2/2m + kv0 ]} 

w -lik2/2m- kvo · 
(29) 

From this expression we can obtain 

e(k, 0) = 1 + a<p(S), 

!Jl(s)=-1-[2s+(1-s2)ln i+£ J. (30) 
4rt\;3 1-s 

Here a = e 2/'11v0 and ~ = kA.0/2. For the imaginary 
part of (29) we have, when w- 0: 

I (k ) _ { - aw/2£2kvo 0 < s < 1 me , w- . o s>1 

Substituting these expressions into (19), we 
find for the rate of energy loss 

(31) 

(32) 

A similar problem has been discussed by 
Smirnov [4]. However, in view of the inaccuracies 
in Smirnov's computation of the polarization op­
erator, the loss formula given in his paper, which 
is claimed to be an improvement over the Fermi­
Teller formula, is incorrect. 

The function gqu (a), obtained by numerical 
integration, is shown in the figure. For a « 1 
the main contributions comes from small values 
of ~ ( ~ « 1 ), for which we have from (30) 
cp (~) = 1/rr~ 2 • In this case E = 1 + acp = 1 
+ a/rr~ 2, and we again arrive at the semiclassical 
formula (26). In the other extreme case a » 1, 
neglecting unity in E ( k, 0) we obtain by numeri­
cal integration: 

t as 
c = 2 J s<p2 (S) = 1.06n2, 

which is somewhat different from the limiting 
form of the function gel (a) [see Eq. (28)]. 

(33) 

It is useful to note that, from formula (30) for 
E(k, 0), it follows that the effective potential for 
interaction of an electron with an ion is equal to 
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r eikr dk 
U~,(r) = - e2 I 2 2 0 2rt k B (k, ) 

e2 (' eikr dk 
=- 2rt2 ) k2 [1 + a<p (k"Ao/2)] ' (34) 

If we write the potential in the form 

U (r) = -ez/te-r!d + Vqu(r)' (35) 

where d is the Debye radius (10), the quantum­
mechanical correction to the screened Coulomb 
potential will be 

e2 
\ dk {[ ~ ( 2 )'j'-1 

Vqu{r) = ~rt2 ~ Feikr 1 + rt k'Ao 

(36) 

For the case a » 1 expression (34) does not re­
duce to a a-function [cf. (12)] and the scattering 
cross section turns out to be angle-dependent: 

( do) 4 m2 12 4m2e4 3 
dQ Born= 16rt 7i,4 I U q fi}q4[1 + a<p (q'Ao/~)]~ ' ( 7) 

where q = 2k sin ( fJ/2) and k ~ p0/n (since 
v « v0 ) 

For a » 1 the transport cross section, in con­
trast to (17), is equal to 

d 1 d~ 
CJtr= ~ (1-cos8) dQa dQ =4rt'Ao2 ~ - 2--, (38) 

0 ~<p (~) 

which, in accordance with (18), also reduces to 
formula (33). 

For real metals a = e 2/nv0 ~ 1 and therefore 
it is necessary to take into account particle cor­
relations. Let us attempt to do this in terms of 
the Fermi liquid theory developed by Landau. [5J 
In this theory the liquid is described by the ordi­
nary non-quantum-mechanical kinetic equation 

!!_ + !!-__at _ !!-_ at = 0 
at op or or op . 

However, the particle energy E ( p, r) depends 
functionally on the distribution f: 

(39) 

s=eo+6e, 6e= ~<l>(p,p')6/(p')dp' (40) 

(Of is the correction to the equilibrium distribu­
tion function). 

The function <P takes into account particle 
correlations. Equation (39) assumes that nk 
« p0, and this procedure can be considered as a 
generalization of the classical (non-quantum-me­
chanical) gas model discussed above in Sec. 3. 
Here <P ( p, p') depends only on the angle between 
the vectors p and p', and can be represented in 
the form 

«<> (p; p') = ~ <I>nPn [cos (p, p') ], (41) 
n 

where Pn are the Legendre polynomials. In 
practice <P must be determined from one or two 
terms of the expansion, and for simplicity we 
assume that 

<I> = <1>0 + <l>t cos (p, p'), (42) 

assuming the remaining coefficients are equal to 
zero. 

Under these assumptions the dielectric con­
stant of a Fermi liquid turns out to be (see [6J) 

4a '11 (s) 
8 (k, 00 ) = 1 + rtk2"A02 ( 1 +At/ 3) ( 1 + AoT] (s}) + A1S2T] (s) ' 

(43) 

where s = w/kv0, and the function 77 ( s) is given 
by 

T] < s > = 1 +.; ln 1 ! +: 1 + irt ; ( 44) 

[cf. (43), (44) with (21)]. In formula (43) we have 
used the designation 

(45) 

It turns out that Po= mv0 ( 1 + A1/3), so that 
an effective mass m * = m ( 1 + A1/3) can be as­
signed to the electrons. For A0 = A1 = 0, formula 
(43) becomes the semiclassical gas formula (21) 
for E(k, w). From (43) we find 

2a• w 1 
Ime(k w)=-----

' k2'A02 kvo 1 + Ao' 

a·=~~~~a~-~~-
(1 +Ao) (1 +Ad3) 

Substituting these expressions into (19), we 
find for the rate of energy loss 

2dk 

( 46) 

k(1 + 4a*/ rtk2'Ao2} 2 • 

(4 7) 

Assuming that the integral is cut off, as in 
formulas (23) and (32), at kmax = 2/11. 0 [see (25)], 
Eq. (47) can be written in the form 

dE 2e4m2 1 +Ad 3 • 
- dx = v 3rtn3- (1 + Ao} 2 gel (a}, (48 ) 

where m is now the free mass of the electron 
(not the effective mass), and gel (a*) is the 
classical function (26) with a* as the argument. 

For a* « 1 we obtain the Fermi-Teller for­
mula, Eq. (2), but with a different factor in front 
of the logarithm, and for a*» 1 [see (28)] we 
have 
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Metal Cu Ag AI Sn Ti 

-

g exp 0.56 1,53 1.13 0.94 1.89 
m*fm 1.5 1.0 1.6 1.2 3 
n-10-22 8.5 5.8 5.4 1 21 

ctfree 1.39 1.56 1.33 2.81 1.04 
cteff 2.08 1.56 2.12 3.37 3.14 

dE 2e4m2 n2 (1+Ad3)3 nm*po2 
--= v--- = v--- (49) 

dx 3nn3 2a2 3 m h ' 

which differs from formula (5) in the factor m*/m 
= 1 + A1/3; the Fermi limiting momentum Po is 
expressed in terms of the density as in an ideal 
gas: Po= ( 3n1i3n )113 . We can see that the formu­
las obtained from the Fermi liquid model agree 
qualitatively with those of the gas model. 

5. Let us compare the formulas which we have 
obtained with the experimental results of Gott and 
Tel'kovskil. [!] The table lists the experimentally 
observed values of the quantity 

dE /dx 
g exp = 2ve4m2/ 3nh3 ' 

(50) 

and also the values of effective mass and density 
as given by Kittel.[7J 

The figure shows curves for gel (a), gqu (a), 
and also the two extreme curves: the Fermi­
Teller curve, corresponding to a « 1, and the 
curve no/2a 2, corresponding to a » 1. The ex­
perimental results are shown in the same figure, 
the solid circles corresponding to the case when 
the mass m is assumed equal to the free elec­
tron mass, and the hollow circles to the case when 
m is taken as the effective mass m*. The values 

of a corresponding to these cases are listed in 
the table. 

Comparison of the experiments with the formu­
las obtained from the Fermi liquid model (which 
as we have shown agree qualitatively with the gas 
model) is difficult since the correlation constant 
A0 is unknown for metals. 

The authors are extremely grateful toT. D. 
Kuznetsova for carrying out numerical calcula­
tions, and to V. G. Tel'kovskil and V. F. Elesin 
for discussion of the work. 
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