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Spherical and cylindrical superconductors, whose dimensions are smaller than the penetra­
tion depth, are considered. The field at which the gap in the excitation spectrum vanishes and 
the field at which pairing vanishes are determined. The dependence of the magnetic moment 
on the field strength is determined. The dependence of the Knight shift on the size of the par­
ticles and on the field strength is obtained for the case when the field is not small in com­
parison with the critical field. 

1. INTRODUCTION 

A superconductor of small dimensions has the 
same properties as a bulk sample, so long as it is 
not located in a magnetic field. The behavior of 
small samples in a strong magnetic field has a 
number of special features. The gap in the one­
particle excitation spectrum vanishes at a certain 
value of the field; however, the other properties of 
the superconducting state (for example, the anom­
alous diamagnetism) are retained. With further 
increase of the field, a second-order phase transi­
tion into the normal state occurs. The magnitude 
of the critical field depends on the dimensions of 
the sample and on the concentration of impurities 
in it. 

The spin susceptibility also depends on the field 
strength. At zero temperature and without any 
spin-orbit interaction, it vanishes in that region 
where there is a gap in the spectrum (the Knight 
shift is absent). With further increase of the field 
strength, the spin susceptibility gradually increases 
up to its value in the normal metal. If a spin-orbit 
interaction with impurities exists, then the spin 
susceptibility is nonzero throughout and increases 
with increasing field strength. 

In this article we consider superconductors 
whose dimensions are small in comparison with 
the size of a Cooper pair and with the magnetic 
field penetration depth, and whose shape has an 
axis of symmetry directed along the field (small 
sphere or cylinder). With specular boundary con­
ditions and in_the absence of impurities, a super­
conductor of such shape possesses a number of 
special features. They arise because in such a 
system the component of the angular momentum in 
the direction of the field is conserved. For a 
sufficiently large concentration of impurities, when 

the mean free path is smaller than the dimensions 
of the system, the results must be insensitive to 
the form of the boundary conditions. One should 
think that pure superconductors with diffuse boun­
dary conditions or irregular shapes are described 
well by the formulas for contaminated supercon­
ductors with a mean free path the order of the 
dimensions of the system. 

2. BASIC EQUATIONS 

The Gor'kov equations[ 1J describing a super­
conductor in an external field have the form 

(iwn -H) G (r, r') + /\* (r)F(r, r') = 6 (r - r'), 

(iwn + fr)F(r, r') + 1\ (r) G (r, r') = 0, 

1\(r) = gF(r, r). (1) 

In these equations wn = (2n + 1)7rT, H is the elec­
tron Hamiltonian measured from the chemical 
potential, which includes their interaction with the 
boundaries, with impurities, and with the magnetic 
field. H differs from H* by the sign of the magnetic 
field. 

If the magnetic field is equal to zero, then it 
can be verified that !::. does not depend on the size 
of the superconductor. For this purpose we expand 
the equation in eigenfunctions of the Hamiltonian: 

H¢, = 6,¢,. (2) 

Assuming !::. to be constant, we obtain 
1\ 

1\(r) =lglT~ 1'1Jl,(r)l2 Wn2+62+1\2 (3) 

If the dimensions of the system are large in com­
parison with interatomic distances, so that!::. is 
much larger than the distance between levels, then 
the summation in (3) takes place over a large num­
ber of states. The rapidly oscillating parts in the 
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factor \lf! A (r) \2 then cancel out, and we can replace 
it by its average value v-1• 

Therefore the assumption made earlier, that t:. 
does not depend on r, is valid. In addition, we can 
replace the summation over A by an integral. As a 
result we obtain 

(4) 

Cil 

Thus, the properties of a superconductor in the 
absence of a magnetic field are determined by the 
density of one-particle states, Po= mpF/21f 2 and by 
the interaction constant g, and do not depend on 
either the dimensions of the system or the form of 
the boundary conditions at the surface or on the 
impurity concentration. This conclusion is incor­
rect for a superconductor in a magnetic field, since 
the operators H and H* have different eigenvalues 
and eigenfunctions. 

3. PURESUPERCONDUCTOR 

In pure superconductors, having spherical or 
cylindrical shapes with specular boundary condi­
tions, the angular momentum component along the 
direction of the magnetic field is conserved. There­
fore the operators H and H* have the same eigen­
functions, but different eigenvalues: 

where JJ. = JJ.om, H is the magnetic field intensity, 
JJ. and m are the components of the magnetic and 
mechanical moments in the direction of the field. 
Expanding the system (1) in these functions, we ob­
tain 

G = _ iron + 6 + J!H 
(ron- iJJ.H)2 + 62 + d2 ' 

(6) 

After substitution of F from (6) and integration 
with respect to ~, the last equation in system (1) 
takes the form 

1 = jgj ponT(~ [(mn- if.lHF + ~2)-'1'). (7) 
Cil 

Here and below the brackets ( ... ) denote averag­
ing over all states with different values of JJ. lying 
on the Fermi surface. Because of the large dimen­
sions of the system, for the averaging one can use 
quasiclassical formulas for the level density and for 
the angular momentum. Thus 

*[pr] = p x r. 

At zero temperature it is necessary to replace the 
sum over frequencies in ( 7) by an integral. 

If the field is smaller than 

H1 = 2mcdo / epoR, (9) 

where R is the radius of the sphere or cylinder, 
then t:. coincides with its value t:.. 0 in the absence of 
a field. This happens because JJ. H < t:. even for the 
states with maximum angular momentum compon­
ents, and in the integral with respect tow one can 
displace the contour by iJJ. H; then the integral de­
termining t:. ceases to depend on the field. 

t:. decreases for large values of the field; from 
(7) and (8) we obtain the following equation for a 
cylinder 

do( 1) _3_ 
lnT = 1 + Zx2 In (x + yx2 -1)- -211- x-2, (10) 

x = eHp0R/2mc t:.. It follows from this equation that 
t:. goes to zero and the pairing vanishes at the field 

(11) 

For a sphere 

H2 = 1/~e'I•Ht = 2.57Ht. 

In the case considered the quantity t:. does not 
coincide with the gap in the one-particle excitation 
spectrum. The density of one-particle states p is 
determined by the imaginary part of the Green's 
function.C 2J Using expression (6), in which we must 
make the substitution Wn --iw, for the Green's 
function, we obtain 

1 ( ro+J.LH ) 
p = n Im ~, G = Po lm [d2 _ ( ro + J.LH) 2]'1, • 

(12) 

For H < H1 the value of the gap in the spectrum 
is determined by the state with the largest value of 
m = p 0R and is given by 

roo=do(1-H/Ht). (13) 

Decrease of the gap with increasing field has a 
simple physical interpretation. The Bose conden­
sate is made up of pairs with zero angular momen­
tum components. The interaction energy of such a 
pair with the magnetic field is equal to zero. When 
such a pair breaks a binding energy 2!::.. 0 is lost, 
but the interaction energy of the electrons with the 
field is gained. Hence the gap decreases. 

The gap vanishes when H = H1• With further in­
crease of the field strength, the density of levels 
at zero energy increases, and when H = H2 it 
reaches its value for the normal metal. Broken 
pairs, which consist of electrons with large angular 
momentum components, are now found in the ground 
state in this region of field strengths. A supercon-
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ducting state without a gap in its spectrum is of 
some interest in principle; therefore, we shall 
present a description of such a state using various 
methods. 

In the Bardeen-Cooper-Schrieffer method [ 3] the 
wave function of the system has the form 

w = n <u+ vam+a_m+> IT am+, 
l>tHI<E >tH>E 

E2 = 62 +LV, u2 = 1/z(i + 6/ h'}, v2 = 1/z(i- 6/ 1!;). 

(14) 

In the method of Bogolyubov [ 4] the operator for the 
creation of quasiparticles is 

uam+- va-m, 11-H < E, 
(15) 

In the method of Gor'kov[ 1J the Green's function 
has the form (6) at finite temperatures, but when 
T = 0 

u2 vz 

G = ro + J.tH- E + i6 sign ro + ro + J.tH + E + i6 sign ro. 

(16) 

In states with I 1-L HI < E the electrons are paired, 
the occupation numbers are equal to v 2, and are the 
same for states with opposite signs of the com­
ponents. The states with 1-L H <- E are empty, but 
those with 1-L H > E are completely occupied. Elec­
trons in these states give a contribution to the den­
sity of levels at low energies. Pairing of electrons 
in the states with il-L Hi < E leads to the result that 
certain properties of the superconducting state are 
retained. For example, the diamagnetic suscepti­
bility turns out to be anomalously large. 

The magnetic moment is determined from the 
formula: 

e [ e J d3rd3p M=- rp--A G--
2mc ~ ' c (2:rt)a · 

"' 
(1 7) 

Substituting G from (6), we obtain 

(18) 

At zero temperature, it is necessary to replace the 
summation over w by an integral, and the first 
term vanishes so long as H < H1. The expression 
for the magnetic moment has then the same form 
as in the limiting London case, although the dimen­
sions of the superconductor are small in compar­
ison with the size of a pair. 

Such a result becomes understandable if the fact 

that the first term is proportional to the mechanical 
moment is taken into consideration. Its vanishing 
corresponds to the well known quantum mechanical 
result that a body cannot rotate as a whole about an 
axis of symmetry. At finite temperatures, or for 
H > H1, individual excitations may rotate. In these 
cases the diamagnetic susceptibility decreases 
with increasing field strength and vanishes when 
H = H2• 

4. SUPERCONDUCTOR CONTAINING IMPURITIES 

When there are impurities in a superconductor, 
then it is impossible to expand the system (1) in 
eigenfunctions of the operators H and H*, since 
these functions do not coincide and are very com­
plicated. However, one can average Eqs. (1) with 
respect to the positions of the impurities. Averag­
ing is carried out in the same way as in the case of 
an infinite medium. [ 1] The corrections which arise 
are of order (p0 R)- 1 and are small when the dimen­
sions of the samples are large in comparison with 
atomic distances. As a result of averaging, Eqs. 
(1) take the form 

(iron+ iG -fl)G(r, r') + (L1* + F*)F(r, r') = 6(r- r'), 

(iu)n + iG + H*)F(r, r') + (L1 + F)G(r, r') = 0, (19) 

where H is the Hamiltonian of the electrons in a 
pure superconductor, 

iG = :nnam-2G(r,r'), F = :nnam-2F(r, r'), (20) 

n is the impurity concentration and a is the scat­
tering cross section which, for simplicity, is as­
sumed isotropic. The considerations discussed 
following formula (3) enable us to verify that G, F, 
and ~ do not depend on r. 

Let us expand the system (19) in eigenfunctions 
of the Hamiltonian H which satisfy Eqs. (5). The 
system is then easily solved. Substituting the ex­
pressions for G and F into (20), we obtain equations 
for G and F: 

Z-r:G -< Wn + G- iJ.tH > 
- [(ron+ G- iJ.tH) 2 + (L1 + F)2]'h ' 

- < L1+P > 
2T:F= [(ron+G-iJ.tlJ)2+(L1+F)2]'f,' 

(21) 

where T = l/v and l is the mean free path. 
In the case considered the mean free path is 

less than or of the order of the dimensions of the 
sample, and in any case it is much less than the 
pair dimension vI~. As will be clear from the 
solution, the important fields are of order 

1-L H ~ (~/ T) 112, and G ~ T-1. Therefore one can 
expand (21) in powers of JJ. H. Here it is convenient 
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to introduce the parameter 

{ 113T(eHpoR I 2mc) 2 

a= 4l1sT(eHpoR I 2mc) 2 

for a cylinder, 

for a sphere. 
(22) 

It is convenient to write the solution of Eq. (21) 
in parametric form: 

2TG = sin cp, 2TF = cos cp, 

Wn = Ll tg cp- a sin cp. (23)* 

From the last equation of system (1) we obtain an 
equation for the determination of the quantity ~: 

~ = I g I po:rtT ~. cos cp, (24) 

( 
\ :rta/M, 

{ 

where cp is expressed in terms of wn by formula 
(23). 

For small~ 

cos cp = ~ I I w + a I 

and from (24) we obtain an equation for the depen­
dence of the critical temperature on the field 
strength: 

(25) 

At zero temperature it is possible to change in 
(24) from an integral with respect to w to an inte­
gral with respect to cp. We obtain 

a>~. 

ln Ao = 
A I a + ( a2 - A2) •;, ( a 2 - AZ) '/, a . A 

ln - +-arc sm-
l ~ 2a 2~ a' 

(26) 

a<~. 

where ~ 0 is the value of~ in the absence of the 
field. The dependence of ~ on the field strength is 
shown in the figure (curve 1). It follows from (26) 

or from (25) that~ goes to zero when o = ~0/2. 
For large field strengths, pairing is not present 
even at zero temperature. 

As in the case of a pure superconductor con­
sidered above, ~ does not coincide with the gap in 
the excitation spectrum, and the gap vanishes at a 
field smaller than the critical. In analogy to form­
ula (12), we obtain 

P = Po lm 2TiG. (27) 

In this formula, it is necessary to substitute G 
from formula (23), in which we make the substitu­
tions Wn- -iw, cp-- i cp. As a result 

p = Po lm sh cp, (J) = ~ th cp-a sh cp. (28)t 

The gap in the spectrum is equal to the smallest 
value of w for which cp becomes complex: 

(29) 

The gap vanishes for a = ~. The dependence of w 0 

on the field is represented in the figure by curve 2. 
Using (26) and (22), we obtain the relation be­

tween the field H 1 at which the gap vanishes and 
the critical field H2 at which pairing vanishes: 

H 12 = 2e-"i4Hz2 = 0.91Hz2• (30) 

The physical meaning of a superconducting 
state without a gap is less clear than in the case of 

*tg =tan. 
tsh = sinh, th = tanh. 

a pure superconductor. And in this case a fraction 
of the pairs are broken when H > H 1• However, 
the electron states in the presence of impurities 
are rather complicated, and it is impossible to 
determine which pairs are broken. 

As follows from (28) and (29), the density of 
states near w 0 is given by 

_ ( ~z )'Is ( w- w0 )'/, p-po -- --- . 
awo a 

(31) 

In the interval H1 < H < H2, the density of states at 
zero energy is 

p = Po(1- ~2 I a2)'1•. 

In order to determine the correction to the 
thermodynamic potential we use the formula[!] 

~' 
I , 
[___ L 

(32) 
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(33) 

Expressing g in terms of D., we obtain with the aid 
of (24) and (23) 

Qs- Qn = -2
1 VponT ~ wn(2- sincp- -.-1-), (34) 

"' Sill (jl 

where q; is expressed in terms of D., a, and wn by 
formula (23). At zero temperature the sum is re­
placed by an integral, and for the energy of the 
ground state we obtain 

r 2 n 2 • 
~- 2 ~a+Ta-, 

Es-En=- 1/2Vpo { 

~>a, 

(35) 

j ~2 - ~a arc sin~ + 
l a 

The dependence of the energy on the magnetic field 
is represented in the figure by curve 3. 

The magnetic moment of the sample is equal to 
the derivative of Qs with respect to the magnetic 
field: 

11 aQ oQ 2a 
1 = fiii = oa H · 

r 4a 

Differentiating (34) with account of (23) and (24), 
we obtain 

M = 2Vpo-7inT~ cos2 cp. (36) 

"' 
At zero temperature, we can replace the sum by an 
integral and obtain for the magnetic susceptibility 

\ 
~-- ~>a. 

3n 
M Xo 

x=-=-{ (37) 
H ~0 I 2 r ;~ 2 1 ( ~2 \ -- -- 1 

1 - ~arc sin - - .3 a+ . 2 +- n'a2- ~2 j , ~ < (t. 
l n a 3 a 2 , 

This function is represented in the figure by curve 
4. Here Xo is the susceptibility in a weak field; 
from (36) we obtain 

5. SPIN SUSCEPTIBILITY (KNIGHT SHIFT) 

Neither the Landau diamagnetism nor the spin 
paramagnetism was considered above. When the 

(3 S) size of the sample is large in comparison with 
atomic distances, these effects are small in com-

It is of interest to compare this expression with 
the corresponding formula for the magnetic sus­
ceptibility of a pure superconducting sphere with 
diffuse boundary conditions: [ 5] 

n2 e2N ll ~ 
Xo = - --R6 - th-. 

12 me v 2T 

Substituting a from (22) into (3 7), we find that 
diffuse boundary conditions are equivalent to an 
impurity concentration leading to a mean free path 

l = 5nR I 6. 

It can be expected that such an assumption leads to 
small errors in the description of diffuse boundary 
conditions in the remaining cases as well. 

Formulas similar to (25)-(30) are obtained for 
a superconductor containing paramagnetic impuri­
ties. [G] The same formulas were obtained by 
Maki! 7J, who investigated a superconductor in a 
constant magnetic field. 

parison with the considered anomalous diamagne­
tism and do not give an appreciable contribution to 
the magnetic moment. However, in nuclear mag­
netic resonance experiments the spin susceptibility 
is measured directly. For the case of a weak field, 
it was determined by Abrikosov and Gor'kov.[B] 
In some experiments the field is not small in com­
parison with the critical field; therefore it is of 
interest to determine the susceptibility for this 
case as well. Here the interaction of the electron 
spins with the field is small, but it is convenient to 
make the expansion after completion of certain ex­
act calculations. 

The influence of a magnetic field on the electron 
spins can be taken into account by adding the 
term fJ 0a · H to H in the initial equations (1), and 
subtracting the same term from H* (iJ 0 is the Bohr 
magneton). Thus, it is necessary to make the 
following substitution in the initial equations: 

Wn -+ Wn - if.toO"H. (39) 
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The average spin is determined in terms of the 
Green's function by the formula 

S =Po~ d~Tn~ ( Sp ~ aG). (40) 
. I 

For a pure superconductor, we substitute G from 
formula (6), taking (39) into account. At zero tem­
perature, the sum over w is replaced by an inte­
gral. If H < H1 we can displace the integration con­
tour and verify that the integral does not depend on 
the spin. Thus, the average spin is equal to zero 
in this region of field strengths. For field strengths 
greater than H1, the spin susceptibility is propor­
tional to the density of one-particle states. Such a 
result is natural; it means that only unpaired elec­
trons contribute to the spin susceptibility. 

A similar result is obtained in a superconductor 
containing light elements as impurities, when the 
spin-orbit interaction is small. In this case the 
spin does not change during scattering, and one 
can make the substitution (39) in the final answer 
(23). Substituting (23) into ( 40), we obtain 

S = p Sp -~--aT ~ sin <p, 
~ "' 

Wn - if.!oaH = /::,. tg <p - a sin <p. (41) 

One should take into consideration that the integra­
tion with respect to ~ must be performed after the 
summation over w; therefore formula (41) gives 
the difference between the spins in the supercon­
ducting and normal states. With this in mind, ex­
panding (41) with respect to JJ. 0u · H, we obtain the 
following expression for the spin susceptibility 

Xs = Xn ( 1 - nT ~ -- cos3_<Jl_) , 
., 11 - a cos3 <p 

(42) 

where q; is expressed in terms of w according to 
formula (23). 

At zero temperature, the integral appearing in 

place of the sum can be evaluated. In accordance 
with its physical interpretation, the spin suscepti­
bility turns out to be proportional to the density of 
one-particle states at zero energy. When H < H1, all 
electrons give the following contribution to the sus­
ceptibility 

Xs = Xn (1 - 112 I a2) '''· (43) 

A different result is obtained if the spin-orbit 
interaction of the electrons with the impurities is 
taken into consideration. In this case the spin of the 
electrons does not have a definite value, and a spin 
susceptibility arises even when all electrons are 
paired. The interaction of the electrons with im­
purities is described by the amplitude 

(44) 

The presence of the second term does not have any 
effect on results which do not depend on the spins. 
The total lifetime T, appearing in formulas (22) and 
(23), is expressed in terms of the constants a and b 
in the following manner: 

1 1 1 1 1 1 - = -+-; - =- np0 J dQjaJ 2, 
T To 1:1 To 2 

(45) 

However, the averaging (with respect to the position 
of the impurities) of quantities which are propor­
tional to u leads to different expressions. There­
fore it is impossible to make the substitution (39) in 
the final expressions. 

In the course of averaging of the quantity propor­
tional to u · H, an expression faf3<Tf3y • Hfyo appears 
which contains not only terms proportional to <T • H, 
but terms proportional to (<T • p)(p ·H) as well. It is 
convenient to describe the result of averaging ex­
pressions proportional to u · H and (<T • p) (p ·H) by the 
matrix 

L = _!_ n \ dQ ( I a 12 -I b J
2 sin2 6 ) • 

2 PoJ 1/2 sin2 6 (j a 12-1 b J2 sin2 6) 1/2 (3 cos2 6-1) (]a 12 -I b J2 sin2 0) 
(46) 

This matrix is equivalent to the factor (2Tr1 which 
appears in connection with the averaging of expres­
sions that do not contain u. 

The corrections proportional to u · H in the 

Green's functions integrated with respect to~ will be 
denoted by G' and F'. Allowing for the field acting 
on the electron spin, Eqs. (21) take the form 

(47) 
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Expanding these equations with respect to the quan­
tities proportional to a · H, and substituting for G 
and F their expressions from (23), we obtain 

('r-1- L +A I cos <p- a cos2 cp) G' = i~0aH cos2 <p. (48) 

ing to (22), a depends on the size of the samples. 
Therefore, in a field which is not very small in com­
parison with the critical field, the magnitude of the 
Knight shift must depend on the size of the samples, 
and for a large degree of dispersion of the particles, 

Let us substitute L from (46), and assume that the the nuclear magnetic resonance line must be broad. 
spin-orbit interaction is smaller than the ordinary In conclusion the author thanks A. A. Abrikosov 
interaction, b « a. Then for a helpful discussion of the results obtained. 

G, cos2 <p • H (49) 
= '~oa , ll/cos <p- a cos2 <p- 2/3't'1 

where T 1 is defined by (45) and denotes the lifetime 
with respect to rotation of the spin. Substituting (49) 
into (40) and taking the remark following (41) into 
consideration, we obtain the following expression for 
the spin susceptibility 

(
' W~<jl ) 

'll• = X.n 1-nT ~ / • (50) ll/ cos <p - a cos2 <p - 2 s't't 
Ill 

For large values of T 1, this expression goes over 
into (42), and the result of Abrikosov and Gor'kov[B] 
is obtained in the case of a weak magnetic field 
(a = 0). For small values of T 1, the spin suscepti­
bilities of the normal and superconducting states 
are nearly equal. The difference is proportional to 
the anomalous diamagnetic susceptibility [ (37) and 
(38)] and is represented in the figure by curve 4. 

The magnetic field influences the spin suscepti­
bility through the parameter a which enters directly 
into Eq. (50) and, in addition, has an effect on the 
relation (23) between cp and wn, and on the value of 
D. given by Eq. (24). It should be noted that, accord-
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