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It is shown that the bulk viscosity coefficient of an adiabatically isolated system is defined by 
a complex function of the frequency. Some properties of the function are investigated. Pres­
sure fluctuations in such a system are also considered. 

THE general statistical theory developed by Kubo 
[I] for linear dissipative processes in systems con­
sisting of a large number of particles yields 
rigorously-derived expressions for the admit­
tances only when dealing with the reaction of the 
system to external forces of dynamic origin, which 
can be included in the Hamiltonian. The case of 
"thermal" external forces does not admit of a 
fully rigorous or sufficiently detailed analysis [ 2]. 

It has been shown by Montroll [ 3], however, with 
special application to the problem of shear vis­
cosity, that a definite canonical transformation of 
the coordinates and momenta of the system parti­
cles makes it possible to separate in the Hamil­
tonian the term describing the shear deformation, 
and then calculate the coefficient of shear viscosity. 

We show in this paper that by means of a suit­
able canonical transformation we can separate in 
the Hamiltonian the term describing the isotropic 
compression or dilatation, and calculate the coeffi­
cient of bulk viscosity for an adiabatically isolated 
system. In accordance with the general fluctuation­
dissipation theorem [ 4], the coefficient of bulk vis­
cosity is connected with the correlation function of 
the pressure fluctuations. This makes it possible 
to obtain by non-thermodynamic means an expres­
sion for the fluctuations of the pressure in an adia­
batically isolated system. 

The equation which determines the coefficient 
of bulk viscosity relates the change in the trace of 
the stress tensor crJ.l.v(J.J., v = 1, 2, 3) with changes 
in the system density. For adiabatic processes 
under infinitesimally small changes in the density 
p a:nd velocity v in the system, the trace of the 
stress tensor can be written in the form (see, for 
example, [ 5] ): 

1/ao1111 = -po- (BpI Bp)o,sp' + ~ divv. (1) 

It is assumed here that p = Po = p' and p =Po 
+ ( op/op )o,S p', and that p' and v are infinitesi-
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mally small; p0 and Po are the equilibrium density 
and hydrostatic pressure; ~ in formula (1) is the co­
efficient of bulk viscosity. For periodic time 
variations of p' and v we can rewrite (1), using 
the linearized continuity equation, in the form 

1/ao,.,. = -Po+ Re{ (iro-1 [p (op i Bp) s]o +~) div v} 

= -p0 + Re{Zs(ro) divv}, v = v0e-i"'t. (2) 

It will be shown below that the bulk viscosity 
and the elasticity can be naturally combined into 
a single complex coefficient of bulk viscosity 
Zs ( w). In the limiting case of low frequencies, 
when the usual hydrodynamic equations are valid, 
it follows from (2) that 

lim ~(ro) == lim Re {Zs(ro)} = ~. 
w-u w---0 

lim Ks(ro) == lim ro Im {Zs(ro)} = [p(Bp/Bp)s]o. (3) 
0>->-0 IIH-0 

With the aid of (2) we can calculate the quantity 
crJ.J.J.l. V /3 in a state that differs little from equi­
librium 

- iro-1p0 + ~) div v} 

= -poVo+ Re{VoZt(ro) divv}, 

where V0-equilibrium volume of the system, 

(4) 

V = V0 + V', and V' is infinitesimally small. The 
reason for considering the quantity crJ.l.J.J. V /3 will 
be made clear later. From (2) and (4) we get the 
following connection between the functions Zs ( w) 

and Z 1 ( w): 

Zs(ro) = Zi(ro) + ipo I w. (5) 

2. We shall now show how the Kubo formalism 
[I] can be used to calculate the function Zs ( w), 

which relates the change in the stress-tensor 
trace with the changes in density. Let the system 
(we are considering a classical system, since 
quantum effects can be neglected for the majority 
of liquids at temperatures far from absolute zero; 
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in addition, the quantum generalization presents 
no special difficulties [ 1] ) , consist of N identical 
molecules and let it be contained in a vessel in the 
form of a cube with edge L ( L 3 = V0). The coor­
dinates and momenta of the centers of mass of the 
molecules are respectively Rj and Pj (j = 1, 2, 
... , N), and { ~ j} is the aggregate of coordinates 
and momenta corresponding to the rotational and 
intramolecular (vibrational) motions of the j -th 
molecule. We write the Hamiltonian of the system 
in the form 

fi = Hc+fl, 

N P;2 1 N 

He=~ 2m + i. ~ U(R;i, {S;}, {S;} ), 
J=i •*J=i 

ll = ll( {M, ... , {£N} ), (6) 

i.e., He is the part of the Hamiltonian describing 
the motions of the molecule mass centers, and Ii 
is part of the Hamiltonian corresponding to the 
rotational and vibrational motions. In (6), m is 
the mass of the molecule, U(Rij. {~i}, {~j}) is 
the potential energy of interaction of molecule 
pairs, which can depend on the rotational and vi­
brational states of the interacting molecules, and 
Rij = Ri - Rj· 

We introduce new coordinates and momenta with 
the aid of the relations 

fj = R;ea, Pi = Pie-a, {S/} = {6;}, (7) 

where a does not depend on the coordinates or 
momenta, but can be a function of the time t. It is 
easy to see that the transformation (7) is canoni­
cal. The change in the vessel dimensions under 
this transformation can be described by the 
formula 

(8) 

In the new variables, for infinitesimally small a, 
the Hamiltonian takes the form 

N .2 

H(a)=H(O)+a{ ~~ 
i=1 m 

(9) 

where H ( 0) -unperturbed Hamiltonian coinciding 
with (6). 

If we assume that a depends on the time, 
a = F ( t), then the expression (9) takes the form 

H(a) = H(O)- AF(t), (10) 

where 

It can be easily seen from (8) that a is propor­
tional to the relative change in the vessel volume 
(for an infinitesimally small change in volume): 
a= V' /3V0• On the other hand, the quantity A 
averaged over the equilibrium Gibbs ensemble 
(the averaging here and throughout is both over 
the coordinates and momenta of the mass centers, 
and over the rotational and vibrational states of 
the molecules), is proportional to the trace of the 
stress tensor of the system: 

<A> = (cr1111V)o = -3poVo. ( 12) 

In the absence of rotations and vibrations, the dy­
namical quantity A coincides with the analogous 
quantity obtained by others from different consid­
erations (see, for example, [s] ), while formula 
( 12) under these conditions is a long known result 
[T,aJ. Thus, the term -AF(t) in (10) describes 
the work of isotropic compression or dilatation of 
the system. 

If the dimensions of the vessel vary in accord­
ance with (8), we obtain in the coordinate system 
defined by the first relation in (7) the following 
expression for the velocity field: 

v=rF.(t), divv=3F.(t) (13) 

(the dot denotes differentiation with respect to 
time). Assuming that the driving force F(t) has 
a periodic time dependence ' 

F(t) = F0eet cos wt, F(-oo) = 0 (14) 

( E -small positive constant that ensures adiabatic 
turning on of the perturbation -AF(t) in there­
mote past; in the final results it should be set 
equal to zero), and substituting (13) in (14), we 
obtain 

1/3cr1111V + poVo = -3Re{VoZ1(w)iwe•1-i"'1F 0}, (15) 

and then, using the condition F ( -oo) = 0, we get 

I 

~ ( 1/3cr1111 (t) V (t) +Po Vo) dt 
-oo 

= 3Re {V oZ1 ( w) e£1-iwt F~}. (16) 

Expression (16) shows that to calculate Z 1 ( w) 

we must consider the variation of the quantity 

f 

B =~ ~ (A(t)- <A>)dt (17) 
-oo 

(the quantities A and (A) are defined by (11) and 
(12) respectively; the function A ( t) describes the 
time evolution of the function 
A(p 1, ... , PN• r 1, ... , rN, {~ 1 }, .•• ,{~N}) in the 
course of natural motion), due to the presence of 
the perturbation - AF ( t) which describes the 
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change in the volume of the system. Using the 
Kubo formalism[ 1J, we get 

(llB) = 3Re {V oZt ( ro) e-ioot Fo}, ( 18) 

1 DO 

Z1(ro) =---lim~ eiwt-et <(A(t)- (A))A(O)) dt (19) 
9kTV0 ......o 0 

( k-Boltzmann constant, T-absolute temperature; 
the averaging ( ... ) is over an equilibrium Gibbs 
ensemble referred to the instant t = 0). 

Substituting (19) in (5), we get an expression 
for the complex coefficient of bulk viscosity 
Zs(w): 

• 1 DO 

Zs(ro) = ..!:_P +--lim ~ eiwt-et ((A (t)- (A))A (0)) dt 
w 9kTV ......o 0 

(20) 

(the zero subscript for the pressure and volume 
has been left out for simplicity). This formula 
leads to expressions for the frequency-dependent 
coefficient of bulk viscosity and isotropic-com­
pression modulus 

~(ro) = Re {Zs(w)} 

= - 1-Re{lim r eiwt-et <(A(t)- (A))A (0)) dt \f• 
9kTV 0 

} 1. 
K,s(w) = w Im {Zs(w) = p + gkTV 

00 

X Im { ro lim ~ eiwt-et <(A (t)- (A) )A (0);. dt}. (21) 
&->-0 0 

3. Let us investigate our result. At low fre­
quencies expressions (21) become 

~(0)= gk~V f (A(t)A(O)-A 0A 0)dt, 
0 

Ks(O)=p+ gk~V ((A0A0)-(A)2), (22) 

where A0 denotes the invariant part of A, i.e., the 
part which does not change in time when the sys­
tern is in natural motion. The term (A 0 A 0 ) is 
obtained by going to the limit ( see [ l] ) : 

(A0AO) =lim (A (t)A (0)>. (23) 
t-+DO 

Formulas (22) must be compared with (3), which 
is usually used in hydrodynamics, and which de­
scribes correctly processes that vary slowly in 
time; as a result we get 

1 00 

~= gkTV ~ (A(t)A(O)-A 0A 0)dt, 
0 

At high frequencies (but not higher than a cer­
tain maximum frequency, above which the concept 
of collective motions becomes meaningless) ex­
pressions (21) tend to the following limits: 

lim ~(w)=O, K5(oo)=p+~--1 -(<A2)-(A)2). (25) 
oo-+oo 9kTV 

Owing to the symmetry of the function (A ( t) A ( 0) ) 
relative to time reversal, the quantity ~ ( w) tends 
to zero more rapidly than any power of 1/ w. Thus, 
the shear-viscosity coefficient decreases rapidly 
with increasing frequency, and the quantity Ks ( w) 
changes from one finite value Ks ( 0) to a generally 
speaking different value Ks ( oo ) : 

1 
Ks(oo)-Ks(O)=-gkTV ((A2)-(A0A0)). (26) 

The difference between Ks ( oo) and Ks ( 0) 
vanishes only in the case of an ideal monatomic 
gas, for then A0 coincides with A (for an ideal 
gas, as can be seen from (11), A is proportional 
to the total energy, which is an integral of the mo­
tion). It follows from the first formula of (22) 
that ~ ( O) =!; = 0, i.e., the bulk viscosity of an 
ideal monatomic gas is equal to zero. 

We note that the theory developed here leads to 
the relaxation theory of Mandel 'shtam and Leon­
tovich[s] if we put for the correlation function in 
(20) 

(A{t)- (A))A{O)) = (AOAO)- (A)2 

(27) 

where T is some relaxation time. 
4. As already mentioned, the complex coeffi­

cient of bulk viscosity Zs ( w) is connected with 
the Fourier transform of the correlation function 
of the pressure fluctuations in the system. In fact, 
as noted above, the dynamical quantity A is, apart 
from coefficients, the microscopic expression for 
the pressure (at constant volume). Therefore the 
function ((A(t) -(A))A(O)) isproportionalto 
the correlation function of the pressure fluctuations, 
and the quantity ((A 2 ) - (A) 2 ) is proportional to 
the mean value of the pressure fluctuations, i.e., 

(28) 

It then follows from (25) that 

(llp) 2 = (K8 (oo) -p)kT/V, (29) 

i.e., the mean value of the pressure fluctuations in 
an adiabatically isolated system is expressed in 
terms of the modulus of isotropic compression at 
high frequencies. It must be emphasized that this 
exact result was obtained by non-thermodynamic 
means. 

The thermodynamic ("low-frequency") theory 
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of fluctuations leads to a different expression (see, 
for example [ 10]): 

(~p) 2 = -kT(op I iJV)s (30) 

(see critical remarks concerning (30) in [ ll] ) . For 
an ideal gas, calculations by means of formulas 
(29) and (30) yield respectively 

(~p) 2 I p2 = 2 I 3N, 

(~p) 2 /p2 = 5/3N. 

(31) 

(32) 

Formula (31) [which corresponds to (29)] coin­
cides with the formula of Munster[ll]. 

The difference between (29) and (30) is essen­
tial also for liquids with noticeable dispersion of 
the speed of sound, i.e., when Ks ( oo) ~ Ks ( 0). 
For liquids of low viscosity, when the difference 
between Ks ( oo) and Ks ( 0) can be neglected, 
formulas (29) and (30) practically coincide (the 
second term in the right side of (29) can be ne­
glected, for under normal conditions we have for 
liquids p/Ks ~ 10-4 ). 

I am deeply grateful to I. Z. Fisher for a criti­
cal discussion of the results and for many useful 
hints. 
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