THE INTERNAL MAGNETIC FIELD IN ATOMS OF W AND Ru DISSOLVED IN IRON

V. D. KUL'KOV, A. V. KOGAN, L. P. NIKITIN, É. P. SAVIN, and M. F. STEL'MAKH

A. F. Ioffe Physico-technical Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor July 23, 1964

J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 122-124 (January, 1965)

The internal magnetic field H_{eff} acting at the nuclei of isotopes of W and Ru dissolved in iron was measured. The field H_{eff} was determined from the anisotropy of the γ radiation from the radioactive nuclei W^{187} and Ru^{103} , oriented at very low temperatures. The value $H_{eff} = 1.1 \times 10^6$ Oe was found for W^{187} . For Ru^{103} the sign of the γ ray asymmetry was found and the decay scheme was improved.

A large internal magnetic field H_{eff} acts at the nuclei of elements dissolved in ferromagnets. One method for determining this field is to measure the anisotropy of γ radiation from radioactive nuclei of elements dissolved in the ferromagnet and polarized at very low temperatures.

The present paper gives the results of measurements of anisotropy of γ radiation from nuclei of W¹⁸⁷ and Ru¹⁰³ embedded in iron. The alloys contained 2-3 wt % of the elements to be studied. The experimental setup was described earlier.^[1]

W¹⁸⁷ Nucleus

The part of the decay scheme of W^{187} which is of interest to us is shown in Fig. 1.^[2] The polarization of the nuclei was determined from the anisotropy of the γ rays with energies 482 and 686 keV. The probability for emission of a 686-keV γ quantum at an angle ϑ to the axis of polarization of the nuclei is given by the expression ^[3,4]

$$w(\vartheta) = 2[1 - \frac{18}{25}f_2 P_2(\cos \vartheta)]. \tag{1}$$

The corresponding expression for the 484-keV γ ray is

$$w(\vartheta) = 2[1 - \frac{9}{28}f_2P_2(\cos\vartheta) - \frac{27}{448}f_4P_4(\cos\vartheta)]. \quad (2)$$

Here f_2 and f_4 are nuclear orientation coefficients while P_2 and P_4 are Legendre polynomials.

The expressions (1) and (2) take account of the partial disorientation of the nuclei in the β transitions which precede the γ rays. The coefficients f_2 and f_4 are functions of the quantity $\beta = \mu H_{eff}/I_0 kT$ (μ is the magnetic moment of the nucleus, k is the Boltzmann constant and T is the absolute temperature). When $\beta \ll 1$ the coefficient f_4 is negligibly small. From the experimentally measured anisotropy of the γ radiation

$$\varepsilon = \left[w(\pi/2) - w(0) \right] / w(\pi/2) \tag{3}$$

FIG. 1. Main part of decay scheme of W¹⁸⁷.

one determines the quantity β and then the product μ H_{eff}. Figure 2 gives the dependence of ϵ on 1/T for both lines of W¹⁸⁷. From a computation using the anisotropy of the 482-keV radiation we get μ Heff = (0.37 ± 0.14) × 10⁻¹⁷ erg; from the 686-keV line, μ Heff = (0.38 ± 0.07) × 10⁻¹⁷ erg. These values agree well within the experimental error. The averaged value is μ Heff = (0.38 ± 0.06) × 10⁻¹⁷ erg.

The magnetic moment of W^{187} has not been measured, but one can make an estimate of it.

FIG. 2. Dependence of \in (formula (3)) on temperature for the two main lines in W¹⁸⁷: a - 482 keV; b - 686 keV.Curves are computed for μ H = 0.38 \times 10⁻¹⁷ erg.

Level scheme			Transi- tion	Sign of	Level scheme			Transi- tion	Sign of
j.	j _i	İf	multipo- larity	E	j.	j _i	i _f	multipo- larity	E
5/2 5/2 7/2 7/2 7/2	7/2 5/2 3/2 7/2 5/2 3/2	7/2 7/2 7/2 7/2 7/2 7/2 7/2	E2 E2 E2 E2 E2 E2 E2		$\begin{vmatrix} 5/2 \\ 5/2 \\ 5/2 \\ 7/$	7/2 5/2 3/2 7/2 5/2 3/2	7/2 7/2 7/2 7/2 7/2 7/2 7/2 7/2	M1 M1 M1* M1 M1 M1*	+ +

*M1 transition impossible.

The stable nucleus Os¹⁸⁹ ($\mu = 0.7$ nuclear magnetons) has a $\frac{3}{2}$ ground state, like W¹⁸⁷, and differs from it in having an extra pair of protons. The magnetic moments of these two nuclei should be the same. Taking μ for W¹⁸⁷ equal to 0.7, we get

$$H_{\rm eff} = (1.1 \pm 0.15) \cdot 10^6 \, {\rm Oe}.$$

From the results of a comparison of experimental moments for similar pairs of nuclei, we can estimate the precision of the W¹⁸⁷ moment to be 0.1 magneton. The error given for H_{eff} includes only the error in the determination of μ H_{eff}.

Ru¹⁰³ Nucleus

The decay scheme of Ru¹⁰³ has not yet been definitely established. In principle, the measurement of the asymmetry of the γ radiation from Ru¹⁰³ permits improvement of the decay scheme and measurement of μ Heff. One can estimate the magnetic moment for Ru¹⁰³ in just the same way as for W¹⁸⁷, and then determine Heff. But the value of ϵ found experimentally for the 495-keV line was $(1 \pm 0.5)\%$ at T = 0.04°K. The sign of the asymmetry may be regarded as definitely established, but the error in the determination of μ Heff

FIG. 3. Main part of the decay scheme of Ru¹⁰³. Spins and parities are given for the levels involved in the measured transitions. is so large that it makes no sense to evaluate the internal field.

Figure 3 shows the main part of the decay scheme of Ru^{103} and gives all the possible values of spins and parities of the levels.^[5]

The Table gives the sign of the asymmetry of the γ radiation from oriented Ru¹⁰³ nuclei, computed for different decay schemes, for M1 and E2 transitions. To agree with the experimentally observed sign of the asymmetry ($\epsilon > 0$), only the transitions

$${}^{5}/_{2} \xrightarrow{3}{}^{3}/_{2} \xrightarrow{7}{}^{7}/_{2}, \qquad {}^{5}/_{2} \xrightarrow{\beta}{}^{7}/_{2} \xrightarrow{7}{}^{7}/_{2}, \qquad {}^{7}/_{2} \xrightarrow{\gamma}{}^{7}/_{2} \xrightarrow{\gamma}{}^{7}/_{2}$$

are possible.

The variant $j_0 = j_f = \frac{7}{2}$, $j_i = \frac{3}{2}$, is not possible, since then the β transition $\frac{7}{2} \rightarrow \frac{3}{2}$ should be forbidden, in disagreement with the $f\tau$ value for the β spectrum with end point 220 keV. If, as found in most experiments, the 495-keV transition is electric quadrupole, the only possible variant is the transition

$$\frac{5}{2} \xrightarrow{\beta} \frac{3}{2} \xrightarrow{E_2} \frac{7}{2}$$

The authors thank Prof. O. E. Zvyagintsev for providing the spectroscopically pure ruthenium.

⁴ Strominger, Hollander and Seaborg, Revs. Modern Phys. **30**, 585 (1958).

⁵B. P. Singh, Nuclear Phys. 21, 450 (1960).

Translated by M. Hamermesh 19

¹Kogan, Reĭnov, Sokolov and Stel'makh, ZhTF 29, 1039 (1959), Soviet Phys. Tech. Phys. 4, 946 (1960); Kogan, Kul'kov, Nikitin and Reĭnov, ZhTF 29, 1419 (1959), Soviet Phys. Tech. Phys. 4, 1308 (1960).

²Dzhelepov, Peker and Sergeev, Decay Schemes of Radioactive Nuclei, Academy of Sciences USSR Press, 1963.

³Hartogh, Tolhoek and de Groot, Physica 20, 1310 (1954).