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A previously developed model[3] is extended to the case of excitation of an arbitrary atom. 
Excitation of the alkali metals by electron impact is studied on the basis of this model and 
by the close coupling method. For nonresonance levels excitation at the threshold proceeds 
mainly via an intermediate level. The excitation cross section is explained satisfactorily 
by the model for E > 3.6.E, and for all values of E in the case of a resonance level. 

1. INTRODUCTION 

IN several recently published calculations of 
cross sections for inelastic collisions between 
electrons and atoms attempts to refine the Born 
approximation within the framework of conven­
tional perturbation theory with a separation of 
variables were not successful. There is an in­
creased discrepancy between the calculated and 
experimental cross sections when distortions of 
the incoming and scattered waves are taken into 
account. Also, an exact solution of the system of 
equations for several levels, as in [t, 2J, improves 
the agreement with experiment to such a small 
degree that little success can be expected in this 
direction. 

In our opinion failure has resulted from the fact 
that the initial approximation takes into account 
the attraction between the incident electron and 
the atom, which is not important in the process 
under consideration. The distance between the 
optical and external (free) electrons is actually 
the principal factor in the inelastic scattering, and 
due to the polarization of the atom this distance 
remains practically unreduced when the external 
electron is attracted by the nucleus. 

On the basis of earlier considerations [3] a 
model was proposed for use in calculating the 
cross sections for inelastic collisions, where the 
repulsion between the external and optical elec­
trons is most prominent. A wave function with un-· 
separated variables was used for the system. Cross 
sections for the excitation [3] and ionization C4J of 
the ground -state hydrogen atom calculated in this 
manner were found to be in very good agreement 
with experiment. 

In calculating the excitation of alkali metal 
atoms the relatively small separations of levels 

must be kept in mind. Here close coupling begins 
to play an important part, since it can ensure the 
correct normalization of the cross sections and 
allows the inclusion of transitions via intermediate 
levels. Therefore the Born approximation with 
close coupling (but neglecting distortions) can be 
used to analyze the excitation processes of alkali 
metals. It should be emphasized, however, that 
this method, while indicating qualitative effects 
directly, does not necessarily lead to quantitatively 
correct results. 

In the present work we have applied the model 
of [3] and the Born approximation with close coup­
ling to the calculation of the excitation of alkali 
metal atoms. An electronic computer was used 
for all calculations. The radial functions of the 
optical electron were determined semi -empirically 
taking account of exchange; [5] these are similar to 
the Hartree-Fock functions. 

2. APPLICATION OF THE MODEL TO A COM­
PLEX ATOM 

The entire discussion in [3] pertains to the hy­
drogen atom, with the complete wave function of 
the system represented by 

(1) 

where cp is the unperturbed wave function of the 
atomic electron, and g(r1, r 2 ) describes the mu­
tual scattering of the optical and external elec­
trons and of their center of mass on the nucleus. 
It was found useful to introduce the effective 
velocity -dependent charge !; • The function g 
satisfies the equation 

[ 1 ~R + 1 ~P + \; - \;_ + ko2] g = 0 (2) 
2 2 R p ' 
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s = ko/ ( ko + I eo I ';,) , p = ~ ( r2 - r i) , R = -~ ( r2 + r!) , (3) 

where Eo is the energy of the atomic electron and 
k0 is the momentum of the incident electron. 
Atomic units and Rydberg energy units are used 
here and in what follows. 

The aforesaid method can be applied directly to 
an arbitrary atom described by the single-electron 
approximation, whereby it is assumed that the op­
tical electron moves in the field of the atom core, 
which is not changed when the optical electron 
undergoes transitions. As previously, g is repre­
sented by (2); however, in the term t/R we would 
have to take into account the incomplete screening 
of the nucleus by the core. Therefore t = t ( R) 
and its form in (3) is approached only for R-oo. 
However, in order to retain a simple analytic form 
of g we shall hereinafter assume for all R that 

\; = const = k 0 (lc0 + leol'i•)-1• 

Taking the foregoing into account, all results 
in [3] are applied directly to alkali metal atoms. 
The case of more complex atoms becomes some­
what more involved because the addition of angular 
momenta and spins must be taken into account. It 
is found that the method used in [3] to calculate the 
exchange part of the transition integral requires 
separate handling of the spatial and spin parts of 
the matrix element. Therefore a general formula 
of the cross section for the transition 

vo(LpSp)noloLoSo- yo(LpSp)n1l1L1S1 

can be given only if the radial, angular, and spin 
factors are separated explicitly. Omitting the 
fairly laborious calculations, we present the re­
sult: 

nv 
/(v, z) = --F(- iv, iv, 1, z), 

sinh nv 

_ [ t.e+ q2]2 X- , 
Ae + 3q2 

v = (ko + !eo 1''•)-1, 

ch = (2Lt + 1) {;P 
( f.. lo l1 )~ 

X 0 0 0 

(4) 

(5) 

(6) 

(7) 

Here .6.E = E 1 -Eo = k5 - k} is the excitation energy, 

P 0 and P1 are the radial functions of the optical 
electron, F is a hypergeometric function, and h 
is a spherical Bessel function. Equation (4) was 
derived on the basis of the same assumptions as 
in [3 J, together with the orthogonality of all one­
electron atomic functions of the initial and final 
states. With <I>(q) = 1, Eq. (4) becomes a Born 
approximation. With f = 1, Eqs. (4) and (5) extend 
Ochkur's formulas [SJ to a complex atom. 

The foregoing formulas were used to calculate 
the cross sections for a large number of transi­
tions in alkali metals. The accompanying table 
gives the cross sections for resonance levels cal­
culated in the Born approximation and with our 
model; x 1 is the momentum of a scattered elec­
tron in threshold units: 

(8) 

The cross sections for the excitation of the 5p res­
onance level and of the next term 6p involved in the 
principal series of Rb are shown in the figure. 

3. EFFECT OF CLOSE COUPLING 

The close coupling of open scattering channels 1> 

plays an important role in the excitation of alkali 
metal atoms. An expansion in partial waves is 
needed to take account of close coupling. We have 
excluded distortion and exchange 2> for the reasons 
discussed in the Introduction. The cross section 
for excitation from the ground state is 

where r = nlkl is the set of quantum numbers of 
the atomic and external electrons. The matrix 
Tr0r 1 depends on the asymptotic behavior of the 
radial functions .'Tr ( r) satisfying the equations [B] 

g:'r(O)=O, g:'r~ i [sin(kr- 7~)6r,r 
+ Tr,r exp ( ikr- i 7;) J , r-> x. 

(10) 

(11) 

1 )In the case of hydrogen the close coupling of open chan­
nels is unimportant; the principal correction of the cross sec­
tion results from coupling with closed channels. 

2 )In the case of very close coupling the omission of the di­
agonal potentials is not so obviously justified. However, we 
shall be interested mainly in the qualitative properties of the 
cross sections, which depend entirely on the nondiagonal po­
tentials. 
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Cross sections for resonance transitions 
(in units of 1ra5) 

Ll, 2s -2p Na, 3s- 3p K, 4s- 4p Rb, 5s- 5p Cs, 6s'/,-6P•f, Cs, 6st;2 6P•j, 

x, Born I M d 1 ~orn I Model Born I M d I Born I Model Born I Model Born I Model 
ap- o e p- ap- o e ap- 3 ap- 3 ap-

prox. of [3] prox. of [3] prox. of [3] prox. of [ ] prox. of [ ] prox. 1 of [3] 

0,2 55 .. 6 7,1 43.0 5.57 67.9 
0.4 97,1 13,7 75.6 10,7 121 
0.6 120 19.3 96.7 15,4 155 
0.8 127 23.9 10.5 19.8 171 
1.2 119 30.8 102 27.7 169 
1.6 101 34.9 89.2 32.7 149 
2,0 83.7 36.2 75.4 34~6 126 
2.8 58.2 33.7 53.6 32.6 90.8 
3.6 42,3 29,0 39,4 28,1 67,1 
4.4 32,0 24,3 30.1 23.6 51.4 
5.2 25.1 20,4 23,7 19~8 40.6 

We shall use the following notation: n0s for the 
ground state, n0p for the resonance level, and nZ 
for other levels. In the case of transitions from 
the ground state the existence of close coupling 
leads to the following two effects. 

A very high probability exists that a resonance 
level will be excited (the n0s - n0p transition). In 
the Born approximation the probability becomes 
greater than unity (the partial cross sections ex­
ceed the theoretical limit). This result is obviated 
by close coupling; the hermiticity of the system (10) 
makes the matrix S = T +I unitary for all the con­
sidered channels. The cross section for the n0s 
- n0p transition then becomes considerably smaller 
than the Born approximation result. At the same 
time the cross sections for other levels, although 
only weakly coupled to the ground state, decrease 
(by about the same factor). This decrease can be 
called a normalization effect. In order to arrive 
at the normalization effect for the n0s - np transi­
tion, we must in (10) retain three equations for 

and set u r 1 r 2 = 0. (The equations suffice for a 
resonance transition.) 

In order to excite nl levels, in addition to the 
normalization effect transitions via an intermedi­
ate level n0p 3> with ur1r 2 >"' 0 can be important. 
Since the n0s - n0p and n0p - nl transitions are 
much more highly probable than the n0s - nl tran­
sition, as a rule, the cross section for excitation 
via the intermediate level can be considerably 
larger than the cross section for direct excitation. 

Numerical calculations confirm the existence 
of both the aforesaid effects. As an illustration, 
the accompanying figure shows the cross sections 
for the excitations of the 5p and 6p levels in Rb, 
calculated with 5s -5p-6p close coupling both with 

3 )This process could be called "Raman excitation" by an­
alogy with the Raman scattering of light. 

6,28 76.8 6.51 35.3 2.48 6.07 4.46 
12.3 138 12.8 63.1 4.94 110 8.83 
18.4 176 19.3 80,5 7.51 141 13,6 
24.8 194 26.3 88.6 10.4 157 19.0 
37.7 192 40.7 87.5 16.4 157 30.7 
47.1 170 51.5 77.1 21,2 140 39.7 
51.6 145 57.0 65.5 23.9 120 45.3 
51.0 104 56.0 47.0 24.4 86.2 45.8 
45.1 76.6 50.7 34.6 22.0 63.9 41.3 
38.6 58.7 43.6 26.5 19.1 49.3 35.7 
32.7 46.4 37.1 21.0 16.3 38.8 30.6 

and without 5p-6p coupling. The normalization 
effect is seen to reduce both cross sections to 
about one-half in the vicinity of the maximum. 
The inclusion of 5p-6p coupling increases sharply 
the cross section for 6p excitation; the peak be­
comes very sharp and is reached near the thresh­
old. The cross section for the 5s -5p transition 
exhibits relatively little variation, but a break in 
the excitation function appears at the threshold 
of the 6p channel. 

Similar results are obtained for other levels 
and other alkali metals. The same should apply 
to ionization, but no specific calculations have 
been performed. 

4. DISCUSSION OF RESULTS 

In the two foregoing methods of calculating the 
effective cross sections different aspects of the 
phenomena are emphasized. It can be stated in 
the terminology of perturbation theory that in our 
model (Sec. 2) we consider the polarization of an 
atom by an external electron as involving all vir­
tual levels without distinguishing any particular 
single level. On the other hand, the close coupling 
method takes into account one or more open chan­
nels, but neglects the polarization interaction of 
electrons. The latter effect is associated mainly 
with closed channels and greatly reduces the cross 
sec;tions. Therefore the model must be supple­
mented by a qualitative close coupling effect, by 
transitions via an intermediate level. So long as 
such a combined procedure is unavailable, we can 
predict only qualitatively the difference between 
the excitation functions of the resonance and other 
levels in alkali metals, such as were recently ob­
served experimentally in [7]. There the cross 
sections for the excitation of all levels except a 
resonance level exhibit a sharp peak and diminish 
by a factor of 2 to 3 at energies up to 30 eV. At the 
same time the cross sections for resonance transi-
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Cross sections for Rb transitions (a) Ss - Sp and (b) Ss - 6p. 

(1) Born approximation; (2) model of [']; Ss-Sp-6p close coup­
ling with ur,r, = 0; (4) Ss-Sp-6p close coupling with ur,r,~ 0; 
(5) experimental results in [7]; (6) experimental results ['] after 
subtraction of cascade transitions. 

tions exhibit flatter maxima and decrease by only 
20% in the same energy region. This behavior has 
been observed qualitatively in [9- 11 ]. As a single 
exception, in [t2] the cross section for the reso­
nance transition in the K atom decreases some­
what more rapidly. 

We at present have no absolute measurements 
of the cross sections, so that only the energy de­
pendence of the excitation functions can be com­
pared with the theory. In addition, cascade transi­
tions must be considered, even if only approxi­
mately. We adopt the following procedure. The 
experimental cross section at the maximum energy 
30 eV is equated to the sum of cross sections for 
the direct and cascade excitations calculated using 
the discussed model. The figure shows that at this 

energy transitions via an intermediate level play 
only a small part. The figure also includes ex­
perimental curves 5 normalized in this manner. 

The curves 6 were obtained by subtracting cross 
sections for cascade excitation. The figure shows 
that the experimental maximum of u (for the 5s -6p) 
transition is about twice as large as the value cal­
culated from the model. Assuming the same for 
the other nonresonance transitions, in the process 
of subtracting we multiplied the cross sections for 
cascade transitions when E < 30 eV by a factor in­
creasing from 1 to 2 at the threshold. In both in­
stances the cascade transitions played a relatively 
small part. The excitation function obtained for the 
5s -5p resonance transition agrees well with the 
model. The cross section for the 5s -6p transition 
at the threshold differs greatly from the model, as 
was to be expected, but for E > 3AE there is good 
agreement. Although the foregoing method of treat­
ing experimental data is somewhat arbitrary, it 
can hardly lead to serious errors. It appears that 
any more reliable procedure would require abso­
lute measurements of the cross sections for a 
large number of lines. 
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