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Possible stationary distributions of turbulent fluctuations are studied in a plasma consisting 
of hot electrons drifting through cold ions at a velocity u exceeding the velocity s of 
two-temperature sound. It is shown that stationary distributions of fluctuations exist in 
the long-wave region; no stationary distribution can be established in the short-wave re
gion. The dependence of the amplitude and angular distribution of stationary turbulent 
fluctuations on the wave vector k is investigated in an unbounded plasma. It is shown that 
as the wave vector is decreased the squared amplitude of fluctuations in the scalar poten
tial increases as k-3, whereas the angular distribution of the fluctuations changes periodi
cally as k is varied. For certain values of the wave vector all turbulent waves (i.e., 
waves propagating at an angle (} less than cos-1 (s/u)) to the electron flow, are charac
terized by the same amplitude, which is independent of the angle 8. For some other val
ues of k almost all turbulent waves are propagated along the electron flow or at an angle 
(} = cos - 1 ( s/u) to it. 

1. INTRODUCTION 

IT is well known that the so called ion -acoustic 
instability can occur in a collisionless plasma con
sisting of hot electrons drifting through a back
ground of cold ions: if the electron drift-velocity 
exceeds the two -temperature sound velocity, then 
acoustic oscillations can be amplified. As Kadom
tsev and Petviashvili [1•2] have shown, the growth 
in the amplitude of random acoustic oscillations 
can be limited by the nonlinear interaction of these 
oscillations with particles in the plasma, as are
sult of which a stationary distribution of fluctua
tions can be set-up, i.e., the plasma enters into a 
condition of steady-state turbulence. 

Starting with a set of "coupled" equations for 
the correlation functions, an equation is derived [1, 2] 

for the spectral distribution of stationary fluctua
tions. This equation describes the balance between 
a "source" and "sink" of oscillations. The source
strength of the oscillations is proportional to the 
increment in growth derived from the linear the
ory, and the sink corresponds to the nonlinear in
teraction of the waves with particles. In the pres
ent paper we derive a more exact equation for the 
spectral distributions of the established fluctua
tions by taking into account a second "source" of 
oscillations -"random forces." This source plays 
a dominant role at short wavelengths; in this re
gion, as is shown below, a stationary distribution 
does not exist. 

Stationary distributions of fluctuations have been 
studied in the long-wavelength region by Kadomtsev 
and Petviashvili[1, 2] for the case of a bounded 
plasma (a discharge of very small cross section). 
In the present paper we study fluctuations in an un-
bounded plasma when the wavelengths are not too 
short. We show that in a turbulent plasma it is 
possible to have not just one but an infinite number 
of different fluctuation distributions. This result 
differs from the result obtained for the case of an 
equilibrium or quasi -equilibrium plasma. For all 
the distributions, as the wave vector k is de
creased, the squared amplitude of the steady-state 
turbulent fluctuations increases as k-3, and the an
gular distribution is also a periodic function of k. 
For certain values of k, the amplitude of the tur
bulent fluctuations does not depend on the angle be
tween the direction of k and the electron flow. For 
some other values of k the amplitude has a sharp 
maximum for waves propagating along the flow or 
at the Cerenkov angle. 

A permissible stationary distribution of turbu
lent acoustic oscillations can be characterized by 
two parameters: the period II of the angular-de
pendence oscillations and the phase of these oscil
lations. At the same time, the value of II charac-
terizes the rate at which the amplitude of the steady 
state oscillations increases as k is decreased. 

In limiting the present paper to a study of sta
tionary distributions of fluctuations, we do not 
consider which one of the permissible distribu-
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tions is set up by a given initial distribution of 
random acoustic waves (or whether in general a 
stationary distribution is set -up at all ) . 

2. EQUATIONS DESCRIBING STATIONARY DIS
TRIBUTIONS OF FLUCTUATIONS 

First of all we derive the equation for the spec
tral distribution of steady state fluctuations in a 
plasma consisting of hot electrons drifting through 
a background of cold ions at a velocity u that ex
ceeds the two-temperature sound speed s. For 
this purpose we generalize the method of Kadom
tsev and Petviashvili[1,2J to some extent, intro
ducing into the kinetic equations "random forces" 
that are then normalized in accordance with the 
general theory of fluctuations (see [3] in this con
nection ). 

Neglecting small terms which do not alter the 
structure of the equation and lead only to renor
malization of the main terms, we have 

- k2 Im e(k, ro)/(k) + a2roe2 ~ dvfe(v)fJ(ro- kv) 

=l(k) ~ K(k,k')J(k')dk', (1) 

where I(k) is the correlator of the scalar poten
tial cp, 

(cp(k. ro)cp(k', ro')> = ll(k+ k')fJ(ro + ro') {J(k)fJ(w- ks) 

+ /(-k)fJ(w + ks)}, 
(2) 

E(k, w) is the dielectric permittivity of the plasma 
(calculated from the linear theory ) 

K (k k') = 16:n:e' (kk')2 [kk']2 (,1 + 3 ro- w' ) 
' (Mro2)3 (k- k')2 w 

~ (w- w')fidv 
X Im ) , (k- k') v - ( (i) - (J)' 

(3) 

a = ( 47re2n/T e ) - 112 is the De bye radius, fe ,i are 
the distribution functions, m and M the masses, 
and T e i the temperatures of the electrons and 
ions. E'quation (1) differs from Eq. (2) of [2] by 
the presence in the left hand side of the second 
term, which describes a wave source due to 
"random forces." 1> 

The integration of the right hand side of (1) can 
be limited to the region k' • u > k's by taking into 
account the fact that the level of turbulent fluctua
tions (for which k • u > ks ) is much higher than 
the level of stable fluctuations ( k • u < ks ) . By 
observing that the function K differs significantly 
from zero only when 

1) 'I:he author has since learnt that an equation of the same 
form as (1) has been derived independently by Silin[•]. 

(w- w')2,..., (k- k') 2Ti I M ~ (k- k') 2s2 

and assuming for simplicity that 1 - s/u « 1, we 
transform (1) to 

(~:;2- s(8)/(k, 8) = -BI(k, 8)k 

a ~ 
X-~ (1- cos2 8 cos2 8')k3/(k, 8')doos 8', (4) 

ak sju 

where a (a') is the angle between k( k') and u, 

Te v' 2:n:.il1 ~ . 8/e 6(8)=- -- fJ(w-kv)k-dv, 
nm m av 

B = 8:rte2TiT.-3 (2:rtM I m)'l•. 
(5) 

We now evaluate the function ~ (a ) in (4). By 
taking into account the existence of a plateau in the 
electron distribution function ( Vedenov, Velikhov, 
and SagdeevC5J) in the region for which afe/8vll 
= Emvll /Te where vii = v • u/u and E is a small 
parameter which characterizes the slope of the 
plateau, we obtain 

{ 1-ucos8/s 
6(8) = e(1- u cos 8/s) 

(cos(:)< sju), 
(cos8 > sju). 

(6) 

In order of magnitude E "' (e2TiA/aT~ )112, where 
A is the Coulomb-logarithm (see [SJ in this con
nection). 

Equations (4), (5), and (6) permit the function 
I(k, a) to be determined. We observe that (4) con
tains both the function I and its derivative BI/ Bk 
and can therefore have an infinite number of solu
tions. It can be shown that even the original inte
gral equation (1) also has an infinite number of 
solutions; this result is due to the degeneracy of 
the kernel K. The integral J K(k, k' )I( k' )dk' does 
not define a unique function I ( k) (in particular any 
function of the form I ( k) = k - 3 F ( a ) reduces the 
right hand side of the equation to zero ) . 

In solving (4) it is convenient to consider the 
regions of turbulence (cos a > s/u) and stability 
(cos a < s/u) separately. In the stable region, by 
neglecting the term which is nonlinear in the func
fion I, we obtain the result previously derived 
from linear theory[7,8] 

I(k, 8) = a2T.(2:rt)-2 (1 - u cos 8 I s)-1• (7) 

For values of k which are not too large, it is not 
difficult to show that the nonlinear effects de
scribed by the right hand side of (4) contribute to 
the correlator of stable fluctuations a term pro
portional to E. 

Passing on to the investigation of fluctuations in 
the region of turbulence we note that, according to 
(4) and (6), for cos a > s/u the function I(k, a) can 
be written in the form 
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l(k,9)= (;~::u p~z){<t-cose)+( 1-~)A(Z) r1
• 

(8) 

where p and I\ are functions of the variable z 
= t(ak)3 and, 

~ = 12e2Tis2a-1 (T.ue)-2 (2M / nm)'l• (9) 

(the order of magnitude of ?; is "' A-1..; M/m ). 
The function p characterizes the amplitude of 

the steady state acoustic oscillations, and the func
tion I\ characterizes their angular distribution. It 
follows from (4) that these functions satisfy the 
equations 

p2 dA =<Do+£. 'Vo, 
dz z 

(10) 

where the coefficients <I> and >¥ are functions of I\ 
alone and have the form 

<1>0 = D-1 { 2ln ( 1 + ~ ) - 1}, 

qr 0 = D-1 { ( 1 - A) In ( 1 + ~- ) + 1 l 
4>t =D-1c !A -In( 1 +~)}. 

'1'1 = D-1{ A~ 1~AA) +In( 1 + ~) }. 

D = In2 ( 1 + ~ )- A(1 ~A) • (11) 

3. SPECTRAL AND ANGULAR DISTRIBUTIONS 
OF STEADY STATE FLUCTUATIONS 

We start our study of the spectral distribution 
of turbulent fluctuations with the case of very short 
wavelength fluctuations, k- oo. From (10) it fol
lows that as z - oo the function p increases like 
z112, but the value of I\ tends to a constant limit 
I\ -1\00 , which is defined by the equation <I>o(/\00 ) 

= 0. It is readily shown that <1> 1 (/\00 ) < 0 and there
fore as z-oo the value of p 2 = 2z<I> 1 ( /\00 ) is nega
tive. (Numerical calculations give /\00 ~ 0.4 and 
p ~ 1.3 iz112 ). Thus for very large values of k 
real solutions of (10) do not exist, i.e., according 
to (8), stationary fluctuation distributions do not 
exist. 

It is also not difficult to come to the latter con
clusion directly by using (4). Indeed, it is evident 
from this equation that I "' k -J/2 as k - oo , so 
that the right hand side of the equation is negative, 
i.e., the nonlinear interaction of the waves with 
particles acts as a source of waves rather than 
as a "sink." 

The value of the wave vector kc at which the 
solutions of (4) and (10) cease to be real is deter-

mined by the initial distribution of the fluctuations. 
It is evident that if aka > 1 (i.e., if zc = ?;(akc )3 

> A-t..; M/m ) then a stationary distribution of 
fluctuations exists for all physically allowable 
values of the wave vector. 

We now pass on to a study of the spectral dis
tribution of fluctuations in the region where the 
wavelengths are not extremely short. By taking 
into account the fact that in this region <1> 0 1 

« >¥0 1p/z, one can obtain a solution of (HJ) in 
close'd form: 

(12) 

where the functions f and g are determined by the 
formulae 

f(A) = S Wo-~'~l'tdA., 
Ct 

g().) = ~ W0-1e~>d). 
c, 

(13) 

and Cp, Cz, Cf, and Cg are constants. From the 
explicit form of the functions >¥ [formulae (11)] it 
follows that the functions ef( /\) and g (I\) have 
branch points at I\= 0 and -1, and that these 
functions are real for I\ > 0 and for I\ < - 1. The 
function g (I\) is bounded for all values of I\; the 
function ef(/\) tends to infinity as I\- oo. 

As a consequence of these results, it is conven
ient to introduce two forms of the functions f and 
g: the functions f+ and g+ for I\ > 0 are defined 
by Eqs. (13) with Cf = +1 and Cg = 0, and the 
functions C and g- for I\ < - 1 are defined by the 
same equations with Cf = - 2 and Cg = - 1. We 
note that F > 0 for I\ > 1 and I\ < - 2, F < 0 for 
0 < I\< 1 and -2 < I\< -1, and g± < 0 for I\> 0 
and I\ < - 1. By knowing the position and nature of 
the singularities of these functions we can see how 
the values of p and I\ change as z is varied. 

For Cz we choose the value of the variable 
z = z0 for which p = 0 and set Cp = Po > 0. It is 
easily seen that I\- 0 as z- z0 - 0. If In ( z0 /z) 
« 1, then 

p =In (zo I z), A= exp {-po /In (zo I z) }. (14) 

As z is reduced the functions p and I\ increase. 
As z- z1 where z 1 = z0 exp {p0g+ ( oo)} we have 
I\- oo and p- oo, where in the limit p = p 0 A.. 

We now examine the variation of p and I\ when 
z > z0• In order to do this we set Cz = z0, Cp = Po 
< 0 in (12). It is easily seen that p- 0 and I\ 
--1 as z-z0 +0. Ifln(z/z0)«1, then 

p = -2 In (z I zo), 

A+ 1 = -exp {po' I 2In (z I z0)}. (15) 

As z is increased the absolute values of the 
functions p and I\ increase and they remain nega-
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tive. As z -z_1 where z_1 = z 0 exp {p0g+(oo)}, 
we have A -- oo and p - - oo , where in the limit 

p=IPoiA. 
It is readily shown that the behavior of the func

tions p and A for z < z 1 is similar to their be
havior for z > z 0• As z- z 1 - 0 both these func
tions tend to - oo, where in the limit p = I Po jA 
(p0 is a negative constant). As z -z2, where 
z2 = z1 exp {- p0g- ( oo) }, the functions p and A+ 1 
tend to zero in the manner determined by (15) (in 
which Po must be replaced by Po). 

The connection between the constants Po and Po 
can readily be established by noting that the func
tion I(k) must be continuous at z = z 1: the values 
of Po and Po can be related to each other by the 
condition that the function J I( k )do must be con
tinuous at z = z 0• As a result we obtain Po = Po 
=-Po· 

Thus the functions p and A are periodic in 
ln(z 0 /z) withaperiod {p0 jg+(oo) +g-(oo)j}. 
As ln ( z 0 /z) is increased the function p increases 
continuously within its period from - oo to + oo ; in 
a similar way, A varies from - oo to -1, passes 
through a discontinuity at the point where p = 0, 
and varies from 0 to +oo as ln (z 0/z) is in
creased further. 

Using (8) we can now examine how the amplitude 
and angular distribution of turbulent acoustic waves 
change as k is varied. The function k3I is a peri
odic function of the variable ln ( k0 /k) with a period, 

Il = 1/3polg+(oo) + g-(oo) 1. 
If ln (k0 /k) =nil (n = 0, ± 1 ... ) then the angu

lar distribution has the extremely singular form: 

I (k, e)= a2Tes 
(2:rt) 2e~u 

X Po(ak)-3{6(1-cose), ln(ko/k)--+nll+O 
b(cose-sju), ln(ko/k)--+nll-0. (16) 

In such circumstances almost all turbulent waves 
are propagated along the current or at the Geren
kov angle to it. If ln ( k0 /k) = II (n + v ), where 

'V = g+ ( 00) {g+ ( 00) + g- ( 00) } -t, 

then all turbulent waves are characterized by only 
a single amplitude which is independent of the 
angle e: 

l(k e)- a2Tes -s 
' - (2:rt)2e~(u- s) Po(ak) ( cos e > ~). <17) 

U I 

The intensity of turbulent sound waves with fre
quencies in the interval w to w +dw is conven
iently characterized by the function 

dk 
l(w)= k2 dw ~ l(k)do. (18) 

According to (8) we have 

/({J)) __ T.spo a ( 1 ) a = ln 1 + -., et<"'> sign 'A, (19) 
2:rt~euaw ' "' 

where the function f is defined by (13). We see that 
as w is reduced, the function J ( w ) increases like 
w-1 (if we disregard the oscillatory factor a, 
whose order of magnitude is unity ). 2> 

We note that the permissible stationary distri
bution is characterized by two parameters: the 
value of p0, which determines the amplitude of the 
fluctuations and the oscillation period of their an
gular distribution, and the value of k0 which deter
mines the phase of the oscillations. In order to 
evaluate these parameters it is necessary to know 
the initial state of the system. 

In conclusion, I wish to express my thanks to 
B. B. Kadomtsev and Ya. B. Fainberg for useful 
discussions. 
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