
SOVIET PHYSICS JETP VOLUME 20, NUMBER 6 JUNE, 1965 

NONLINEAR HIGH-FREQUENCY PLASMA CONDUCTIVITY 

V. P. SILIN 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor June 23, 1964 

J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 2254-2265 (December, 1964) 

We develop a nonlinear theory of the conductivity of a fully ionized plasma in a strong high­
frequency field. We find the time-dependent plasma conductivity caused by the electron-ion 
collisions. We show that, owing to the oscillations of the absolute magnitude of the electron 
velocity, odd multiple harmonics may arise in the current and lead to the appearance of 
multiple harmonics of the field. We determine the dependence of the nonlinear current on 
the polarization and on the constant magnetic field. 

}. A situation can often occur in a strong high­
frequency field such that the velocity in the elec­
tron oscillations under the action of the field is 
appreciably larger than their thermal velocity. 
This will be just the case which will interest us in 
the present paper. When we speak about high fre­
quencies we shall assume that a particle passes 
through a distance much smaller than its mean 
free path during a period of oscillation of the field. 
Under such conditions it is reasonable to talk about 
free oscillations of a particle under the action of 
the field (at least, in the zeroth approximation in 
the ratio of the collision frequency to the field fre­
quency). It is clear that in such a situation there 
arises an essentially nonlinear field -dependence 
of the plasma conductivity. 1> Indeed, for a field of 
the form 

E(t) =Eo cos(wt + 6) (1.1) 

for example, the velocity of the oscillations of an 
electron has the form 

YE= (eEo/mw)sin(wt+6). (1.2) 
This is just the velocity which will characterize 
the effective electron-ion collision frequency which 
is well known to be inversely proportional to the 
cube of the absolute magnitude of the velocity. 

The formula for the conductivity with a veloc-

1) An example of such an experimental situation are the 
experiments on the radiation acceleration of a plasma. [ 1 ] 

Indeed, in these experiments the electron temperature is about 
1 eV, and the frequency of the variable field w ~ 2 x 1010 sec·'. 
For such parameters the field 8 = mvTw/e for which the vel­
ocity of the oscillations VE is comparable to the thermal vel­
ocity VT turns out to be equal to about 300 V /em. In real de­
vices, however, we are dealing with fields which are larger by 
orders of magnitude. 

ity of the form (1.2) is inaccurate when the sine 
vanishes. We show therefore in the following that 
there occurs for fields of the form (1.1), apart 
from the dependence of the conductivity ~ E03, a 
factor containing the logarithm of the ratio of the 
velocity of the oscillation to the thermal velocity. 
In the case of a circular polarization of the field, 
when the absolute magnitude of the velocity re­
mains unchanged, such a logarithm does not occur. 

The time -dependence (1.2) of the speed of the 
oscillations leads to a time -dependence of the con­
ductivity which in turn leads to the occurrence of 
a field of higher harmonics. The results obtained 
in this paper enable us to determine the magnitude 
of such field harmonics. The nonlinear theory of 
plasma conductivity developed in the following is 
applicable both to a plasma without a magnetic field 
and to a strongly magnetized plasma under condi­
tions where the spatial dispersion is unimportant, 
but where the electron-ion collisions are the deter­
mining factor. In other words, we do not take into 
account effects of the excitation of waves in a plas­
rna or Cerenkov and similar mechanisms for trans­
ferring energy from waves to particles. All the 
more so, since so far there is no theory of waves 
in such a plasma with an electric field. 

We must note that the cause of the nonlinearity 
of the conductivity considered in the present paper 
will manifest itself in a whole range of other kinetic 
characteristics, and not only in the case of a com­
pletely ionized plasma. The studies that are pos­
sible here may form a new division of the kinetic 
theory of plasmas. 

2. To consider nonlinear effects arising in a 
completely ionized plasma we use the kinetic equa­
tion for a plasma in a strong, uniform electric field 
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which was obtained earlier. [2, 3] This equation can 
be written in the form 2> 

t 

/a0 (Pa, t)=fao(Pa-ea S dt'E(t') ). 
-00 

(2.6) 

O]a O]a 
-+eaE(t)-=la(Pa, t). 
fJt Opa 

Here 

(2.1) Equation (2.6) enables us to write down the follow­
ing zeroth approximation expression for the current 
density in the plasma: 

I a (Pa, t) = ~~ ~ s dpbdl'b fJUab D!·(l~--= ru J) 
1, dp,,' {)r"' 

X /a(P,, l +-r}/b(Pu, t+-r), 

where 

t+~ 

Pa = Pa [t + T, t, Pu] = p, + ea ~ dt'E(t'), 

t+• t' 

(2.2) 

(2.3) 

R(l = Ra [t + T, t, Pa, ra] =I' a+ Va't + ~·!!:__ ~ dt' \ dt"E (t"), 
11?a f f 

(2.4) 

while E(t) is the high-frequency electric field, ea 
the charge of the a-th kind of particle, rna their 
mass, Va their velocity, Pa their momentum, and 
ra their coordinate. The distribution function fa 
is normalized to the number of particles, Na, in 
unit volume of the plasma. Of course, we must 
note that to apply perturbation theory with respect 
to the Coulomb interaction Dab• in the framework 
of which the kinetic equation from [2•3] given here 
was obtained, we must have in mind a field that is 
screened at large distances and we must also cut 
off the integration at small impact parameters. 
This procedure is conventional when we use the 
Fokker-Planck equation for particles with a Cou­
lomb interaction. [4] We note that in the recently 
published book by Balescu [5] Eq. (2.1) was ob­
tained by means of a peculiar diagram technique, 
verifying the direct perturbation theory method 
which was the basis of the earlier papers [2,3]. 

To solve Eq. (2.1) we use the fact that the field 
is a high-frequency one. Accordingly we neglect­
as is usually done when the role played by the col­
lisions is small-in zeroth approximation the col­
lision integral. The solution of the equation in 
zeroth approximation, 

(2.5) 

can then, clearly, be written in the form 

2)We completely neglected in Eq. (2.2) the variable mag­
netic field and also the non-uniformity of the particle distribu­
tion in the plasma. These effects are small for a nonrelativis­
tic plasma and, for instance, for the case of waves with a 
phase velocity close to the velocity of light. 

e 2N t 
j<0>(t) = L ~ s dt'E(t'). 

ma a -oo 

(2. 7) 

It is clear that the zeroth approximation current 
does not describe any nonlinear effects. On the 
other hand, the zeroth approximation function (2.6) 
depends essentially non-linearly on the field. In 
particular, when fao is a Maxwell function with 
temperature Ta, we get the following expression 
for the average energy of the particle: 

( mava2) 3 ea2 ( 's ) 2 
-- = -· xTa +- dt'E(t') 

\ 2 2 2ma · 
-oo 

(2.8) 

It is clear that nonlinear effects will be particu­
larly distinct when the second term on the right­
hand side of (2.8) turns out to be larger than the 
first one. 

The solution of the first-approximation equation, 

8/a1 fJ/a 1 

dt+eaE(t) fJpa =la0 (pa,t) (2.9) 

can clearly be written in the form 
t t' 

fa 1 (Pa, t) = Ldt'la0 (pa-ea~ dt"E(t"),t'), (2.10) 

where Ii0> is the collision integral (2.2) in which 
we have substituted an expression of the form (2.6) 
for the distribution function. As a result we get 
for the first-approximation current density 

"(1)-' ~I\' I\' ea ( 1 + 1 \ (4:rteaeb)2 std' sod (' dkk 
J-~L;ab-- -;,. t T·'tJ-

ub ma ma mb (2:rt}O -00 -oo k" 

X S dpadPb/ao(Pa}foo(Pb) 

X exp( ik, (va- Vb}'t +( e_c,_- (J_b_ l 
1. ma mb J 

' ' 
t+~ t +~ 

x[ ~ dt"(t'-t")E(t")+-r S dt"E(t")]}. 
. l -oo 

(2.11) 

For a Maxwell distribution, and also assuming 
that there are ions of one kind only, and neglecting 
small quantities of the order of the ratio of the 
electron mass to the ionic mass and of the order 
of the ionic thermal velocity to the electronic ther­
mal velocity, we get 

' 
2 e~e-2N N 1 0 dk 1 't' 

j<t> = - n n:3v:2 i S dt' S d-r S /C4 k ~ dt" (kE ( t") ) 
-00 -00 -00 
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t·+~ t'+' 

+ik~[.~. dt!(t'-ti)E(ti)+-r I dt!E(ti)l}.(2.12) 

Here VT = (KTe/m)1/ 2 is the electronic thermal 
velocity. The integration over k in Eqs. (2.11) and 
(2.12) and in subsequent equations is from kmin 
to kmax· We must note that to determine kmax 
by estimating the limits of the applicability of 
classical mechanics or of perturbation theory we 
must use for the energy the expression defined by 
Eq. (2.8). We shall use for kmin the reciprocal of 
the ionic De bye radius assuming that the ionic ve­
locity in the electric field is not larger than the 
thermal velocity. 

3. Equation (2.12) gives a description of non­
linear effects occurring under conditions when the 
electronic velocity in the electric field appreciably 
exceeds the thermal velocity. Of course, the non­
linear formula (2.12) will give different effects for 
different time dependences of the field. However, 
we can understand a whole series of regularities 
by considering a field of the form (1.1). We get in 
that case from (2.12) 

X sin ( wt + 6 - wy ) 
kvr 

f 1 2eEo wy ( wy )' Xexp\.- 2 y2 + ikx --sin--·- sin wt + 6 - -- ~ 
mw2 2kvr \ 2kvr J · 

(3.1) 

Equation (3.1) becomes especially simple when the 
frequencies satisfy the condition 

(3.2) 

We then get 

dj(l) e2Ne . 4 ,/2 V 2 2 1 

~dt = - m'·' Eo sm (wt + ") f JtJ ;e e; tCmax ~ u 2 .3 \jJ In -- . 
3 m V1 k,.,; 11 

Here 

where 
2 X 

<D(x) =-= ~ dte-t' 
-y :rt 0 

is the probability integral. 
In the limit Vk » v~ we have 

(3.3) 

(3.5) 

and hence 

(3.6) 

Such an asymptotic formula could be obtained using 
Landau's collision integral [ 4 J if in it we change in 
the proper way the minimum impact parameter. 
The reason for this lies in the fact that in the case 
considered the kinetic energy of the oscillations 
turns out to be appreciably larger than the change 
in the particle energy under the action of the field 
during a collision time. 

Using Eq. (3.1) we can answer the question about 
the heat given off in the plasma under the action of 
the field E0• To do this we average, over a period 
of the oscillations of the field, the product of the 
current density and the electrical field strength. 
As a result we get 

(3. 7) 

where 

(3.8) 

R(p,x) = p 1 dz ~ dy/0 ( 2pzsin~) 
0 0 

X r e-x'v'/2 + _1 Ei f- x2y2 )- e-z'v',z- .1 Ei (- z:J;'l_ J] 
L 2 z. 2 2/. 

(3. 9) 

If condition (3.2) is satisfied, Eq. (3.8) can be writ­
ten in the form 

_ 32")12rr N;e; 2e2 ( mwvr \ 3 ( eEo ) kmax 
v- ---) Q --- ln--

m2Vr3 eEo ' 2mw~·T kmin' 
(3.1 O) 

where 

Q(r) = ~ dzz2e-z'[I0 (z2) -/1(z2)]. (3.11) 
0 

In the limit of weak fields we get from Eq. (3.10) 
the usual expression for the effective collision 
frequency 

eEo 
--~Vr. 
mw 

(3.12) 

For strong fields we have 

. 16N;e;2mw3 { eEo . } k.·max 
• Vas= ln---- + 1 ln--

eEo3 2mwvr kmin' 

eEo 
--'?>vr. 
liH•J 

(3.13) 
In this last formula, the 1 occurring within the 
braces is the result of the numerical integration. 3 > 

See the table for intermediate fields. 

3) Q(r) ~ {ln r + 1}! 2j2n when r ~ 1. 
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Values of the function R(p, x) 

~I 0.5 1.:, 15 

0.5 0.01 0.04 0,07 
1 0.01 0.076 0.27 0.49 
2 0.068 0,49 1.6 2,6 
3 0.19 1.2 3.1 4.8 
4 0,35 1,9 4.3 6:5 
5 0.49 2.5 5.3 7.8 
6 0.57 2.9 6.0 8.8 
7 0.65 3.2 6,8 9.8 
8 0,70 3.5 7.0 10 

10 0.76 3.8 7.6 11 
14 0.88 4.4 8,8 13 
18 0.96 4,8 9.5 14 
24 1.0 5.2 10,5 15 
30 1.1 5,5 11,1 16 

4. The nonlinear dependence of the current den­
sity on the electric field strength leads to the pos­
sibility of the occurrence of new harmonics. Ex­
panding the right-hand side of Eq. (3.1) in a 
Fourier series we have 

j(il(t) = E0 ~ [crn' cos {(2n + 1) (rot+ 6)} 
n=O 

+ <Tn" sin {(2!7' + 1) (rot+ 6)}], (4.1) 

{ r ( n + 1) roz J ( eE0k . wz \ 
X cos.-~-.-- l~n 2x--2Slll~) 

, far , mol ~,.z T , 

nroz -(· eE0k wz )} -cos-- 12n+2 2x---·sin---- ; 
kvT mw2 2kvr 

(4.2) 

a:U differs by having sines instead of cosines. 
For frequencies satisfying condition (3.2) we get 

thus 

e2Ne 4l'2n Nie2ei2 l kmax ~ 1 
j<1J =--Eo n -- L.J ---

mro2 m 2vr3 kmin n=02n + 1 

t ( x2e2Eo2 ) 
X cos [(2n + 1) (rot+ 6)] ~ dx-x2 exp - 4m2w2vr2 

0 

(4.3) 

In the limit of strong fields Eq. (4.3) becomes 

... 
j<1> = O'as ~cos [(2n + 1) (rot+ 6)] Eo, (4.4) 

n=O 

where 

(4.5) 

The sum over n in Eq. (4.4) is extended up to a 
maximum value of the order of magnitude of 
eE 0 /mwvT. 

In the opposite limit of weak fields we get from 
Eq. (4.3) 

'(il-E e2Ne ~( eEo ) 2n3cos[(2n+1)(rot+6)] 
J - o -- V:eff L.J --- • 

mw2 n=O 2mrovr (2n + 1) (2n + 3)n! 

(4.6) 

For high frequencies, which violate condition 
(3.2), we must use instead of Eq. (4.6) for weak 
fields an expression for the effective collision 
frequency in which we must substitute w/vT for 
kmin· 

As an example we turn to the problem of the 
excitation of new harmonics by the field of a trav­
eling wave. E0 is then a constant and the depend­
ence of the nonlinear current on the coordinates 
occurs through o = - k0z, where k~c 2 = w2 - wie· 
The field of the new harmonics can be looked for 
in the form 

En exp {i(2n + 1) (koZ- rot)}. 

In that case 

En= Eo nro(crn"- icrn') (2n + 1) . 
2roLin(n + 1) 

(4. 7) 

An estimate of the order of magnitude of the field 
of the harmonics for a frequency w somewhat ex­
ceeding wLe is given by the formula 

En~ 2n + 1 (. mrovr ) 3 ~ie2:i2 ln ~In kmax. (4 . B) 
Eo n(n + 1) eEo m Vr w mrovr kmin 

It is necessary to note that the electrons will be 
heated under the action of a strong high-frequency 
field. In other words, as a result of collisions, the 
energy of the oscillatory motion of the electrons in 
the electric field will become random. During a 
time approximately equal to t 0 = 1/v [see (3.10)] 
the energy of the thermal motion becomes equal to 
the energy of the oscillations after which the non­
linear effects considered by us cease to be clearly 
expressed. For a plasma of a density "' 1011 em - 3, 

a temperature "'1 eV, and for E0 "' 3 kV/cm, 
w = 2 x 1010 sec -1 such a time turns out to be 
"'10_, sec. 

5. In this section we discuss the problem of the 
dependence of the appearance of new harmonics 
upon the polarization of the electric field. Let 

E(t) = Et cos (rot+ lh) + E2 cos (rot+ 62). (5.1) 

Using Eq. (2.12) we can in this case easily write 
down the expression for the current density 

j(l)= ~~-e3Neei2Ni __ 1_r d,;·,; I dkk exp{- 1 k2,;2vT21 
n mw 2l + 1 J.. J k2 2 J 

l=O -oo 

( 2ek [ ( k )]'/, ro,;) X !21+1 ---2 w 1 sin - 2-· 
m(l) . 1f , 
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X cos{ (2l + 1) [ wt + { rot+ qJ ( : ) ]}. (5.2) 

where 

w(n) = (nE1) 2+ (nE2)2+2(nEi)(nEz) cos (<'11-<'lz), (5.3) 

e2iQJ(n) = (nE1ei6, + nE2ei6•) / (nEte-i6• + nEze-i6•). 1 (5.4) 

Under the conditions when inequality (3.2) is ap­
plicable, we get from Eq. (5.2) 

21\r 2N· 2 .2 k oo 1 ~ '/ p> = e "'~ . ,e e, ln ~ ~ .-. -- donn (w(n))' 
mw V 2n mvTs kmin l=o 2l + 1 

X cos {(21 + 1) [qJ (n) + wt]} exp (- /~ (~) 2) m (J) VT 

(5.5) 

Here n is a unit vector over the direction of which 
the integration is carried out. 

According to (5 .4), in the case of a plane­
polarized field cp ( n) = o, and in that connection the 
sum over harmonics is retained. The opposite sit­
uation occurs for circular polarization, when E1 
and E2 are equal in magnitude and at right angles 
to one another, and o2 - o1 = n/2. We find again, 
according to (5 .4), that cp ( n) is now the azimuthal 
angle of the vector n. According to (5.3), w(n) 
does not depend on this angle. Therefore, in Eqs. 
(5.2) and (5.5) only the terms with l = 0 are non­
vanishing. In particular, in the strong field limit 
we get 

e2Ne 4Nie;2mw3 kmax 
j<1> =- ln-- { E1 cos (wt + b1) 

mw2 eEo3 kmin 

(5.6) 

The difference between Eq. (5.6) and Eq. (4.4) 
consists not only in the absence of the higher har­
monics, but also in the fact that in Eq. (5.6) there 
does not occur a double logarithmic expression. 
The cause of this difference can easily be under­
stood if we note that the mean square of the elec­
tronic velocity for the field (5.1) is equal to 

ez 
(v2) = 3vT2 + - 2--; {E 1 sin ( wt + bi) + Ez sin ( wt + b2) }2. 

m w2 

(5. 7) 

For the case of circular polarization of the elec­
tric field, corresponding to Eq. (5. 7) we get then 
at once 

(5.8) 

In other words, only the direction of the electronic 
velocity is changed in a circularly polarized field, 
while its magnitude remains unchanged. The veloc­
ity therefore never vanishes and hence there does 
not appear the logarithm of the ratio of the velocity 
of the oscillations to the thermal velocity. On the 

other hand, the absence of the time-dependence of 
the electronic energy leads to a time-independent 
plasma conductivity. The cause of the appearance 
of harmonics disappears thus for a circularly po­
larized field. 

6. We turn now to a consideration of a plasma 
in a strong magnetic field. The distribution func­
tion in zeroth approximation can, if we neglect the 
particle collisions, be written in the form 

t 

/a0 (Pa1 t} = /ao( p,- ea ~ dt'{~ B(E(t')B) 
-oo 

+ __!_ [E (t') B] sin Qa ( t- t') B . . 

+ !z [B [E ( t') B]] cos Qa ( t - t') } ) , (6.1) * 
where B is the magnetic field, and Oa = eaB/mac. 
Using the collision integral obtained earlier [2,3 J 
which differs from (2.2) only in that P and R take 
into account a constant, uniform magnetic field, we 
can use (6.1) to obtain the following generalized 
Ohm law: 

dja ea2Na . . ""' 2 Naea3'Vbeb2 
---E(t)+[QaJa]=IL; ----
dt ma b n Ina 

Here 
t+-.: 

Fa = exp{ ik ~: ~ dt'( B (E(~~B) (t- t') 

+ l~{!')_~_ ~-COS Qa(t -_!]_ 
B Ra 

[B[BE{t')]]sinQa(t-t')\ "k eatT:-.: '{B 
- J+I-J~ 

B2 Qa / ma:_"" \ 

[E (t')B] COS Qa (t- t')- COS Qa (t + 't- t'} +- .. -- . -- ·--···-----·------"'·-'----
B Qa 

(6.2) 

(E(t')B 
Bz t 

+ [~ [B!~01! ~!~--~c:_( t - !J~ ~~Ea ( t + t -=!1_) } . 
(6.3) 

In the case of a Maxwell distribution Eq. (6.4) 
becomes 

*[E(t')B] = E (t') X B. 
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f 1 o [ (kB) 2 [kBJ2 . Qa-r ll <I> a = exp 1 - -- Vya" ·--- 't2 + 4 ---sm2 -- f 
~ 2 B2 B2Qa2 2 J ' 

where v?:r = KTa /rna. Then 
(6.5) 

z t B 
<va2) = 3uya2 + e.ao ( I dt' {--:- (E (t') B) +sin Qa (t- t') 

m,,· , ~oo B2 

[E(t')B] , [B [BE(t')]] })2 (6 _6) 
X R - cos Qa ( t - t ) B 2 

In the case of strong fields one must use just the 
second term on the right-hand side of this formula 
to determine the minimum impact parameter. 

For an electrical field of the form (5.1) the last 
term in Eq. (6.6) becomes 

e 2 r '1 
__::._2 1 -B;-;; ( B, E1 sin ( wt + 6!) + Ez sin ( wt + 62) )2 
ma I. -w· 

1 '('. (I) 

+ (wZ-Qa2) 2 B 2 [B[B,E1sin(wt+ot) 

Qa 
+ E2 sin (wt + 62)]]- B [B, E1 cos ((•lt + 61) 

+E2 eos (wt+o2)J)l (6.7) 

Equation (6. 7) as well as (6.2) are applicable only 
when I w2 - S2~ I is large compared with the square 
of the effective collision frequency. Since the col­
lision frequency is relatively small, it is clear that 
for the case where the frequency of the variable 
field is close to the gyroscopic one, the field may 
turn out to be strong owing to cyclotron resonance. 

For an electric field of the form 

E = L:Ei cos (wt + oi) 
i 

Equation (6.3) takes the form 

Fa= n ex/\. i~c:_ (k[~~B]) 2 [sin(wt +Or) 
r Ina wlJ(w-Qa) 

. , J . ea ( (kB) (BEr) 
-sm(w[t,"t']+or) +l m" --B2w2 -

+ _!12(kE~=(kB) (BEr) \ 
B2(w2- Qa2) } 

X [cos(wt +Or)- cos(w [t + -r] + Or)lJ 

(6. 8) 

(6.9) 

The formulae obtained here enable us to obtain 
for a given polarization of the field the necessary 
expressions for the nonlinear conductivity. As an 
example of an application we shall consider the 
case of perpendicular magnetic and electric fields 
which is of practical interest. The electric field 
has the form (5.1) with mutually perpendicular 
components of equal magnitude ( E 1 = E 2 = E 0 ) and 
o2 - o1 = rr/2; we can then write Eq. (6.9) in the 
form 

F { . 2e".E0k sin 8 . w-r 
a = exp l s1n ··­

mnf!)(w-Q0) 2 

(6.1 0) 

where e and lj! are the polar and azimuthal angles 
of the vector k in a coordinate system with the 
polar axis along the magnetic field. 

For frequencies of the variable field larger than 
the ionic gyroscopic frequency and for magnetic 
fields in which the ionic Larmor radius is large 
compared with characteristic impact parameters 
of collisions, we can neglect the ionic motion. 
Using Eqs. (6.5) and (6.10) we can then write the 
generalized Ohm's law in the following form: 

dj e2Ne 
-d + [Qej] = --[E1 cos(wt + 6!)- Ez sin(wt + 61)] 

t m 

- E1 [s1 sin(wt + 61) + s2 cos(wt + ot).J 

- Ez [ s1 cos ( wt + oi)- Sz sin ( wt + 6!) ], (6.11) 

where 

0 kmax 7£/2 

s! = eZNe SeeiEZNi ~ d-r cos W't ~ dk. k ~ dO sin2 e { 't COS2 e 
m m 0 -oo 2 kmin 0 

+ ~e sin Q.-r sin2 8 } exp {--;. vT2k 2 [ "t'z cos2 0 

4 Q.-r ]} ( 2eEok sin 0 w"t' \ 
+ -sin2 e sin2 -- !1 r~-) sin - 2 1, 

Qe2 2 mw ( W - ••e 1 

(6.12) 

while s 2 differs only in that cos wT/2 is replaced 
by the sine of the same argument. 

The reason for the absence of higher harmonics 
in Eq. (6.11) is the same as for the case of circular 
polarization when there is no magnetic field and is 
connected with the fact that the electronic velocity 
is constant. The effective intensification of the 
electric field in the vicinity of cyclotron resonance 
is shown clearly in Eq. (6.12). Under conditions 
when the electronic gyroscopic frequency is not 
larger than the Langmuir frequency, we get from 
(6.12) 

X exp (- uy2k 2"C2/2w2 ) {-cos [ 2eEok sin 2't l mw(w- Qe) ~ 

mw(w-Qe) . [ 2eEok . "t' ~J} +-----sm -----sm-
2eEok sin -r/2 mw ( w- Qe) 2 ' 

(6.13) 

and the corresponding expression for s 2 is ob­
tained by replacing the cotangent by unity. 

When inequality (3.2) is satisfied, Eq. (6.12) 
simplifies and becomes 
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(6.14) 

For strong fields we then get 

e2Ne 4:rtN;e;2m(w- Qe) 2 ( Q )l kmax 
St = -- sgn w - e n --

m I eEo3 l kmin 

e2Eo2 
when ~ 1. (6.15) 

m2vT2(w- Qe)2 

The function s 2 is under those conditions rela­
tively small. 

In experimental conditions it is often convenient 
to work in a region where the electronic gyroscopic 
frequency, the Langmuir frequency, and the fre­
quency w of the varying field are not very differ­
ent, one from the other. Under such conditions 
Eq. (6.14) is a fair approximation.4> A more accu-

4)We considered in an earlier paper[•] the influence of the 
electrical field upon the interaction of colliding particles in a 
strongly magnetized plasma, leading to the departure of parti­
cles from the interaction region because of drift in crossed 
fields; in that paper we showed that the double logarithmic ex­
pression whiCh occurs as usual becomes dependent on the 
drift velocity and thereby on the electrical field strength. We 
note that it then turns out to be more convenient to introduce 
a maximum collision time Tmax ~ p'/2 J (m/e 2), where p is the 
impact parameter, rather than a cut-off at small impact para­
meters in the integration. We must use the same procedure 
also to obtain an asymptotic expression when inequality (3.2) 
is violated, when an electron may rotate several times in the 
collision region. 

rate (numerical) result can be obtained using 
Eqs. (6.13) and (6.12). 
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