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We consider the diffraction of neutrons by quantized magnetic flux lines in type II supercon­
ductors. The formulae obtained enable us to determine the magnetic structure of a super­
conductor from neutron diffraction data. 

IT is well known[!J that a magnetic field larger 
than Hc 1 penetrates into the interior of type II 
superconductors in the form of quantized magnetic 
flux lines which form a regular lattice in two di­
mensions, either square or triangular.Lt,Zl In the 
papers by De Gennes and Matricon[ 3J and F. 
Shapiro (private communication) it was suggested 
to study this magnetic structure using neutron dif­
fraction. In the present paper we evaluate this ef­
fect, considering both a square and a triangular 
lattice. 

The transition probability for neutron scatter­
ing is given by the equation 

( 1) 

where the transition matrix element is evaluated 
using free neutron functions, 

1 • 
M = fln V ~ eiqr (a H) dV, ( 2) 

where q = (p' - p)/n, JJnCT is the neutron magnetic 
moment, and H ( p) is the magnetic field in the 
sample[!] 

Jl ( ) = <Do_ 'V K (? - R"'l 
p 2n:62 .;:..J · 0 6 J ' 

(3) 

m 

p is the radius vector in the xy-plane which is 
perpendicular to H, the Rm correspond to the 
coordinates of the flux line centers, o is the pene­
tration depth of the magnetic field, <1> 0 = ch/2e is 
the flux quantum of the magnetic induction, and 
K0 a MacDonald function. 

Substituting ( 3) into ( 2) and evaluating the 
matrix element we get 

( 4) 

where S is the cross-sectional area of the sample 

in the xy-plane. The sum in (4) is non-vanishing 
only when the vector q = T which is a vector of 
the reciprocal lattice, so that 

I L e-i<JIIm 12 = IN L f>q, "r = N2 L f>q, 
1n ~ 

where N is the number of centers. 
The square of the matrix element is equal to 

so that the probability for a transition per unit 
time will be: 

2:rt (2:rtNf.tn<D0) 2 6(q-'t) S 
dw = T S3 L ( 1 + f>2-r2)2 (2rr1i)2 

' 
X~ 6 (e- e') 6 (Pz- P/) d3p' 

or, finally, 

d - 2mn, 2 <D 2 t N \2 )1 {) (q- 't) d , 
W - 1i 3 fln o 1\ S ) ..::..J ( 1 + f>2-r2 )2 qJ ' 

' 

(6) 

A neutron diffraction study of the structure of 
a substance can be performed by the Debye or by 
the von Laue method. If we use a polycrystalline 
or a not very homogeneous sample, the orientation 
of the magnetic lattice will vary over the sample. 
We must then apply the Debye method. The differ­
ential extinction coefficient in the Debye method, 
i.e., the ratio of the number of particles scattered 
into d<p per unit time and unit volume to the flux 
density is equal to dhD = dw/v so that 

where B = <1> 0N/S is the magnetic induction in the 
sample. 

The neutron wavelength is given, but the orien­
tation of the reflecting planes is random. We re-
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write the o -function in (7) as follows: 

b ( q - T) = 6 I!_ - ~ + T2 - 2 T 'TCOS cp I [ ( 
? p \'/, J 

It ,~ n . 

where cp is the angle between p and 1', J the 
scattering angle, J 7 the Bragg angle, and 
cp 0 = (7T- J)/2. Averaging over the angle cp we 
get the following expression for dhn: 

(8) 

dhv='.!!!_C(tnB) 2 " M(ft-ft,) dit (9) 
lt3p f - pTCos(\h/2) Ct262 + 1)2 · 

' 
The intensity of the n-th maximum from the 

plane with Miller indices k, l is equal to 

ik· IJ = mn2 ( B) 2 ( d,z ) 
n '-2 ? j.tn 2 n p· :rrn 

Xlr 1-(·_n'A lzl-'h I 1+( 2nn6)z]-z (10) 
2d"z ' J L , dkt 

The scattering angle J 7 is determined by the 
Bragg condition 

2d,z sin (it, I 2) = n'A, 

dkl is the distance between the planes for the sys­
tern of ( kZ) planes: 

(11) 

for a quadratic lattice, and 

d1<1 = a173 I 2 (k2 + ZZ- kl) '/, (11') 

for a triangular lattice. Here a is the lattice 
period which is equal to ( <1> 0 /B) 11 2 for a square 
and to ( 2<1> 0/J3B) 1/Z for a triangular lattice. It 
follows from Eq. (10) that if .\ « o (this is 
usually satisfied since A. is a few angstrom), the 
intensity decreases for large n as n 5 . 

If the experiment is performed on a very 
homogeneous superconductor, we can assume that 
the sample will be a single crystal as far as the 
magnetic structure is concerned 1 l and apply the 
von Laue method which enables us to determine the 
type of lattice. We shall assume that the neutrons 
have a Maxwellian distribution with a temperature 
T and that their average wavelength is appre­
ciably smaller than the period of the structure. 

The transition probability must in that case be 
averaged over the momentum distribution of the 
incident neutrons. To obtain the extinction coeffi-

1 )If we take a single crystal with one of its principal 
axes along the field, we can assume that the crystallo· 
graphic anisotropy will favor the stability of the magnetic 
structure. 

cient dh we must refer the averaged transition 
probability per unit volume to the averaged flux. 
We have thus 

dhL = I dw exp (- 2~2T) dp / I v exp (- 2~2T) dp. ( 12) 
0 0 

Substituting here Eq. (6) we get 

h 2nmn ( B)Z" b(ft-ft<) d{} (13) 
d L = fi2T j.ln Li-r(1 + -r2<'J2)2 sin(ft,/2) . . 

< 

The angle J 7 is in the von Laue method deter­
mined solely by the crystallographic planes and 
each maximum in the diagram corresponds to the 
sum of the reflections of all orders from the 
given family of planes. The angle J- 7 depends in 
Eq. (13) only on the Miller indices. We must take 
the quantity T to be equal to 2m/dkz [see (11) 
and ( 11') l and sum over all n. 

If o/dkz > 1, the sum over n converges fast. 
In the opposite limiting case, o/dkz « 1, we can 
get the asymptotic formula 

(14) 

It is not difficult to determine all scattering 
planes. We shall give here the formulae to deter­
mine the Miller indices from the scattering angle 
for two directions of the neutron beam for each 
lattice. 

a 
FIG. 1 

a 

FIG. 2 

D 

1. In the case of the triangular lattice ( Fig. 1) 

l =cos(~-:) /sin~ (a) 
/; 2 () 2 ' 

L it[ (;r 1'!' 
=COS-,-. CO!" - ) 

k 2 ! 3 2 1 • 

2. In the case of a square lattice ( Fig. 2) 

I I k =COt({} I 2), 

I ! k =cot (1'1 I 2 + ;r, I 4). 

(b) 

(a) 

(b) 

We can use these equations to draw beforehand the 
Laue diagrams to be expected. 
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In conclusion I use the opportunity to thank 
Professor A. A. Abrikosov for his assistance with 
completing this paper. 
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