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The connection between the nearest singularity z0 of the scattering amplitude f ( E, z) and 
the asymptotic behavior of the partial amplitudes fl (E) for l- oo is considered in general 
form. Two different cases are investigated: 1) z 0 lies outside the physical region -1 ::s; z 
::s; 1; 2) z0 is at the edge of the physical region, z0 = ±1. The method used consists of a re
duction of the series of Legendre polynomials to a power series. The results obtained are 
applied to nonrelativistic potential scattering. The position and nature of the nearest singu
larity of the amplitude are determined for scattering by a potential of the asymptotic form 
(/..tr )-v exp [ -(!..tr )OL], 0 ::s; OL ::s; + 00 • In the concluding part of the paper the method developed 
is applied to a study of the cross sections for interactions of elementary particles at high 
energies. A simple derivation is obtained for the Froissart relation which restricts the in
crease of the total interaction cross sections of elementary particles for s - 00 • 

1. INTRODUCTION 

IT has been shown in a paper by Okun' and 
Pomeranchuk [t] that the interaction of elementary 
particles at large distances ( r » 1/f.l, with f.l the 
mass of the 1r meson) corresponds to the singu
larities of the scattering amplitude that are near
est to the physical region, and it was pointed out 
that it is possible to calculate phase shifts oz with 
l » 1, which correspond to peripheral collisions. 
The program for calculating the peripheral phase 
shifts which was indicated in [t] has been carried 
out in a number of papers, for example for the 
two-meson phase shifts of nucleon-nucleon scat
tering,C2•3J for the phase shifts for scattering of 1r 

mesons by nucleons,[4] and so on. In this the main 
attention was given to the most accurate possible 
determination of oz for comparatively large 
values of l, for the purpose of using calculated 
peripheral phase shifts in making phase analyses 
of experimentai data. This led to great complexity 
in the calculations, so that for the values of l con
sidered in [2- 4] the asymptotic behavior of oz is 
still not fully revealed. 

The present paper is devoted to a treatment of 
the asymptotic behavior of the phase shifts oz (E) 
[or the corresponding partial amplitudes fZ (E)] 
in the limiting case l - 00 • Because of the small
ness of the oz for such values of l it is naturally 
impossible to compare these phase shifts directly 
with experimental data. Since, however, the form 

of the asymptotic behavior of fz (E) contains 
within it complete information about the nearest 
singularities of the scattering amplitude as a 
function of the momentum transfer, in cases in 
which fz (E) can be found for l- oo without using 
the analytic properties of the scattering amplitude 
f (E, z) the method considered in this paper pro
vides a possibility of determining rather simply 
the nearest singularity off (E, z). For example, 
this is the situation for nonrelativistic potential 
scattering. 

It is known from the theory of functions of a 
complex variable [5, 6] that the asymptotic behavior 
of the coefficients of the Taylor's series for an 
analytic function f ( z) is uniquely determined by 
the singularity of f ( z) that is nearest to the 
origin. It is shown in Sections 2 and 3 how the 
problem of determining the asymptotic behavior 
of the partial amplitudes fz ( E ) for l - oo can be 
reduced to an analogous but much simpler problem 
for a power series. In this no assumptions are 
made about the behavior of f ( E, z) for I z I - oo, 

and in particular it is not assumed that dispersion 
relations with respect to the momentum transfer 
exist. In Section 2 the case is considered in which 
the nearest singularity z 0 of the amplitude f(E, z) 
lies outside the physical region, and Section 3 

deals with the case z 0 = ±1. The main results of 
Sections 2 and 3 are collected in the formulas (12) 
and (13), which give in explict form the connection 
between the position and nature of the nearest 
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singularity of f(E, z) and the asymptotic behav
ior of fz ( E ) . These formulas include all cases in 
which the asymptotic behavior of fz( E) is of the 
form za (ln l)f3e-Z~. with arbitrary values of a, 

(3' ~. 
In Section 4 these results are applied to the in

vestigation of the analytic properties of the ampli
tude for potential scattering. The singularity 
nearest to the physical region is found for the 
amplitude for scattering in a potential which be
haves at r -.oo like (pr)-v exp[-(pr)a]. Sec
tion 5 presents a derivation of the well known 
Froissart inequality [7] for the total interaction 
cross section which is much simpler than those in 
the literature, [7 ,a] and discusses possibilities for 
further strengthening of the inequality. 

2. ASYMPTOTIC BEHAVIOR OF fz (E) FOR z 0 
LYING OUTSIDE THE PHYSICAL REGION 

We consider the elastic scattering of spinless 
particles and introduce the (dimensionless) scat
tering amplitude 1) 

~ 1 
f(E,z) =~ (2l+1)fz(E)P1(z), fz(E) =y.(e2i 6z-1). 

l=O l (1) 

Here E and z are the kinetic energy and the 
cosine of the angle of scattering in the center-of
mass system of the colliding particles, and are 
related to the invariant variables s and t by the 
usual formulas 

E = s'f,- (mt + m2), z = 1 + t /2k2, 

k(s) = 112[s-1(s2 -2(m12 +m22)s+ {m12 -m22) 2)J't• 

( mt> m 2 are the masses of the colliding particles). 
The scattering phase shifts 6Z ( E ) are in gen

eral complex (if there are other open channels 
besides the elastic-scattering channel) and satisfy 
the inequality (which follows from the unitarity 
condition) 

Im 6z (E) ;;,: 0, (2) 

which can also be expressed in other forms: 

lmfz;;,: lfd 2 or ltzl ~ 1. (2a) 

To elucidate the analytic properties of the am
plitude f ( E, z) in the complex plane of z (with a 
fixed value of E) it is convenient to break the in
finite sum in (1) up into two terms: 

l)The true scattering amplitude [the coefficient of the out
going wave r-• exp (ikr)] in nonrelativistic quantum mechanics 
differs from (1) by a factor k -•. In relativistic theory it is con
venient to use a dimensionless scattering amplitude (cf. [7 ' 9 ]) 

which differs from (1) by a further factor s'1'/2k(s). For s » 
m~ , m~ this factor approaches unity. 

f(E,z) =ft(E,z) +f2(E,z); (3) 

L-1 

ft(E, z) = ~ (2l + 1)/z(E)Pz(z), 
1=0 

/2(E,z) =~ (2Z+1)fz(E)P1(z). (3a) 
l=L 

Since f1 ( E, z) is a polynomial in z, all of the 
singularities of the scattering amplitude in the 
finite part of the z plane are singularities of its 
"infinite tail" f2 ( E, z) (for any value of L). 

We first assume that all of the singularities of 
f ( E, z) as function of z lie outside an ellipse 0 
with its foci at the points z = ±1 and with the 
semiaxis major a= 1 + E ( E > 0 by an arbitrarily 
small but finite amount. Taking L » 1, we sub
stitute in f2 ( E, z) the asymptotic formula2) for 
Pz ( z ), which holds for points z outside the 
ellipse 0: 

[ 1 ( z ']''' -Pz(z) ~ - 1 + ) (z + "Yz2 -1) 1• 
2:rtl "Yz2 - 1 

The conformal transformation w = z + ( z2 

(4) 

1 ) 1/ 2 takes the ellipse 0 into the circle I w 
=a+ (a2 - 1 )112 > 1. Changing to the variable w, 
we get for the ''tail'' f2 ( E, z ) of the amplitude 

h(Ez)= 2w ~l''•fz(E)w1['1+0(~,~)] 
' (:rt(W2 -1)]'/• l=L \ lfe l 

(5) 

for I w I =::: a + ( a 2 - 1) 11 2• For sufficiently large 
L the correction terms not written out explicitly 
in (5) are arbitrarily small, and have no effect at 
all on the asymptotic behavior of the coefficients 
of the power series in (5) for l- ""· 

2)This formula, without indication of the error, is given in 
[ 10]. To obtain an accurate estimate of the error we can start 
from the following representation of P v(z) (see ["], page 142): 

r (v + 3/z) [ ( 1 \ ]''' . n w- ) P.(z)• 
r(v+1) , w.' 

= w•+'/,F( 1 ; -1 ; v+-~;~) 
2 2 2 w 2 -1 

+ iw-(•+'J,>F ( 1 . 1 . v + 3 . 1 ) 
, 2 ' 2 ' . -2 ' - w2 - 1 , ' 

w = z + (z2 - 1) 'i•. 

For v = l-. oo and lwl > 1 we can replace the hypergeometric 
functions by unity and neglect the second term; the terms 
dropped are of the respective orders of magnitude l4l (w2 - 1W' 
and exp (-2llnlwi). For z outside 8, lwl > 1 + (2e:)"\ and the 
error of Eq. (4) does not exceed max !(8l2';,Ev'r', exp 
(-2l2'1'E'h)!. The condition L >> 0.1E-v' assures that the error 
in (4) is not larger than (8l2%EVT', uniformly in z everywhere 
outside the ellipseS. 
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It follows from (5) that the analytic properties 
of the function f2 ( E, z ) are determined by a 
power series (in the variable w). As is well known 
however, the region of convergence of a power 
series is a circle with its center at w = 0 and 
having on its circumference the singular point of 
the function nearest to w = 0 (or several such 
points), and the asymptotic behavior of the coeffi
cients of the power series is uniquely determined 
by the position and nature of this nearest singu
larity. [5•6] To put this connection in explicit form, 
we let w0 be the nearest singularity of the func
tion f2 ( E, z ) in the w plane. Going over to the 
variable ~ = w /w0, we find that the power series 

00 

<p(~) = ~ an~n, 
n=L 

has its nearest singularity at the point ~ = 1, and 
its nature is uniquely determined by the nature of 
the singularity of f (E, z) at z = z 0• According to 
the Cauchy-Hadamard formula (cf. [ 6]), 

lim lanl 11n = 1, 
n-+oo 

and therefore the asymptotic behavior of the co
efficients an is subject to the restriction 

lim lnlanl = 0. (7) 
n-+oo n 

It follows from this that the possible "asymptotic 
states" for the behavior of the an for n -GO are 
as follows: 

A. an ~ na, na ( ln n ){3 (a, {3 arbitrary num
bers). 

B. an~ x(n) exp (ana), where 0 <a< 1, a 
can be of either sign, and x ( n) is a slower (at 
n - oo) function (in comparison with an exponen
tial), for example any function of type A. 

The treatment of an asymptotic behavior of the 
an of type A is an elementary matter. a) We give 
only the results: 

an~ 1/nmlnn, ~ = -1, 

( )m-1 1 
<p(~) ~ (1- ~)m-1Jnln--. (8c) 

(m-1)! 1-~ 

These three possibilities exaust all cases of 
asymptotic behavior of the type an~ na (Inn )f3 
with arbitrary a and {3. We emphasize that here 
only the main terms are given of the expansion of 
the function <p ( ~) at the point ~ = 1, those which 
have the highest degree of singularity. 

Passing to asymptotic forms of the an of type 
B, we note at once that the nature of the singular
ity of <p ( ~) at ~ = 1 is different according to the 
sign of a. 

1. a > 0. A very large number of terms of the 
power series for cp I~) are important for ~ - 1, 
and therefore the series can be replaced by an in
tegral and calculated by the method of steepest 
descents: 

00 00 

<p(~) = ~ x(n)eana~n ~ ~ x(n)exp(an<X + nln ~)dn 
n=O 0 

{( aa )1/(1-cx)} = C (a, a) ( 1 - ~) -(2-a)/2(1-cx) X """f=T 

[ ( aa )rx/(1-cx) J 
X exp (1- a)a 1 _ ~ . (9) 

It can be seen from this that <p ( ~) has an essen
tial singularity at the point ~ = 1, whose nature 
(i.e., the index of the exponential) does not depend 
on the form of the "weak" function x (n ). 

2. a < 0. In this case an - 0 more rapidly 
than any power of n; therefore the function <p ( ~) 
is infinitely differentiable in the closed circle 
I ~ I :s 1, and in particular at all points of the 
circle of convergence. Nevertheless, ~ = 1 is an 
essential singular point for <p ( ~ ). 

This can be seen in the following way. Since 
the nature of the singularity is entirely determined 
by the "tail" of the power series, the singularity 
of <p ( ~) at ~ = 1 is the same as that of the inte-

an~ ncx(lnn)ll, a =I= -m (m = 1, 2, 3, ... ), gral 

(Sa) 

3 )For example, the case of a power-law behavior an "'na 
can be analyzed by means of the following expansions: 

1 ~ ;n 
In-=~-· 1-; n 

n=i 

00 

~ exp(ancx+nln~):x(n)dn='¢(~). 
0 

For ~- 1 it is not hard to get the following 
expansion: 

1 ~ ( an ) f(an + 1) 
'¢(~)= 1-~ n~/ f=Y f(n+1) (-x)n 

(10) 

If x ( n) has an asymptotic behavior of type A, the 
sum in (10) is an entire function of x of the order 
p = (1- a)- 1 and the type a= (1- a)aa/(1-a). 
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Since the neighborhood of the point t = 1 corre
sponds to a large circle in the complex plane of x, 
it is clear that for t - 1 directions can be found 
along which I lj! ( t) I increases like exp ( u I x IP), 
that is, more rapidly than any power ( 1 - t )-n. 

The entire function of the type (10) [with x (n) 
= 1] has been studied by Barnes.C12J Using his re
sults, we find: a) on the physical sheet of the t 
plane cp ( t) has a finite limit in all directions at 
the point t = 1; b) nevertheless, t = 1 is a branch 
point, and on those sheets of the Riemann surface 
where the condition 

holds, cp ( t ) increases for t - 1 in the following 
way: 

{ [ ( a I a I )"]1/(t-a}} 
q>(~)-exp (1-a)lal -, 1 _~ 

[ here slower factors of the type ( 1 - t )(3 have 
been omitted]. 

It is now easy to find the connection between 

(11) 

the nearest singularity of the amplitude in the z 
plane and the asymptotic behavior of the partial 
amplitudes fz (E); for this we must substitute in 
(6) the asymptotic form of the coefficients an 
which corresponds to the chosen type of singular
ity of f ( E, z ) . The results are shown below 
[Eqs. (12), (13)]; we have confined ourselves to 
the cases in which the coefficient of the exponen
tial in fz (E) is of the form l a ( ln l )f3, so that it 
belongs to class A. By means of (9), (11) it is not 
hard to examine also cases in which the coefficient 
of the exponential belongs to class B, but we shall 
not do this in general form; we confine ourselves 
to selecting, in Section 4, one specific example of 
this sort of case of potential scattering. 

Accordingly, if the nearest singularity of 
f ( E, z) is outside the physical region we have 

!z(E)"' za-'h(lnl) ~ e-l", a =I=- m (m = 0, 1, 2 ... ) , 

j<s>(E, z) = Af(a) (z 02 - 1)"'i2 (z 0 - z)-'-' { ln-1-)~ ; 
'. Zn-Z 

(12a) 

j<·'>(E. z) =- __:'lt'::-J~''-----;- (z0 - z)"' i ln-.J.- )H' 
· rn!(~-l-1)(z02 -1)'"'" Zn-ZI 

(12b) 

. , A(-)m 1 
j<··>(l~, z) = ----· ., '? (zo- z)"' ln ln ·-----. (12c) 

m!(z0--l)""- zo-z 

If the nearest singularity of the amplitude is 
located on the edge of the physical region ( z 0 = 1 ), 
then the formula (4) for Pz ( z) cannot be applied 
in its neighborhood and f2 ( E, z) does not reduce 
to a power series in the variable w. Therefore 
the method we have used does not hold. In Sec. 3 
a different method will be presented for finding 
the connection between the nearest singularity of 
f ( E, z) and the asymptotic behavior of fz ( E }, 
which holds also for z 0 = ±1. For convenience we 
give here the results obtained with this method 

It( E) "' (In l) ~ /l'-', a > 0, a =1= 2m, 

2Jt ( 1 - Z} rx/2-1 ( 1 \ B 
j<•>(E z) = ---. ln----1 · (13a) 

' 2'-'i2+B sin ( Jta/2) rz ( a/2) I 1 - z ) ' 

It( E) "' (lnl) B jl2m, ~ =I= - 1, m = 1, 2, 3, ... , 

( _) m-1 ( 1 _ z) m-1 ( 1 ) HI 

j«>(E,z)=-zm+H[(m-1)!)2(~+1) ,ln~ ;(13b) 

/z(E)"' 1/ [2m ln l, 

(-)m-1 (1 _ z)m-1 1 
j<•l(E z) = ln ln -- (13c) 

' 2m-2 [ ( m - 1) !]2 1 - z 

Here z 0 is the singularity of the amplitude which 
is nearest to the physical region; 

[ 2 ]"' A = n · ( 1 + Zo / V Zo2 - 1 ) ' ; 

zo =cosh 1;, 1; = ln [zo + yi;z.-=- 1]; 

f(S) ( E, z) is the most singular part of the scat
tering amplitude at the point z 0; and the sign ~ 
denotes asymptotic equality-that is, f (l) ~ g ( l) 
if 

lim [j(l)/ g(l)) = 1. 

Now let f ( E, z) be the amplitude correspond
ing to a Feynman diagram of arbitrary order. In 
order not to complicate matters by including spin 
effects, we assume that all internal lines of the 
diagram correspond to scalar particles. The 
singularity corresponding to the given diagram is 
of the form [13• 14] 

{ C0 (zo-z)'<, x =I= 0, 1, 2, .. . 
f(E, z),.., -Co(zo- z)" ln(zo- z), x = 0, 1, 2, .. . 

Here K = % ( 3n - 4v + 3 )/2, n is the number of 
internal lines, and v is the number of vertices in 
the diagram. 

In the case in which this singularity is the one 
nearest to the physical region, 4) the asymptotic 
behavior of fz (E) is given by 

4 lwe recall that besides its own singularities a Feynman 
diagram has the singularities of all the "narrower" diagrams. 
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[ 2 ]-'/, 
fL(E)~Co n(1+zo/l'zo2 -1) (z02 -1)"12 

e-l~ {[r(-x)]-1, x=F0,1,2, ... 
X--· 

zx+'h (-)"x!, % = 0, 1, 2, ... , 

where ~ = ln [ z 0 + ( z% - 1) 112]. 

We note that for partial amplitudes of Feynman 
diagrams the coefficient of the exponential is al
ways simply a power ( ln l does not appear).· The 
values corresponding to a pole diagram in the t 
channel (pole at t = 112 ) are as follows: 

C0 =g2/2k2(s), z0 =1+~-t2 /2k2 (s), x=-1; 

the pole phase shifts fall off at l - oo as z- 112 e -ZL 
Since the value of K increases as the diagram is 
made more complicated, [t 5] according to the fore
going formula this leads to a more rapid decrease 
of the corresponding phase shifts oz with increase 
of l. 

3. THE ASYMPTOTIC BEHAVIOR OF fz(E) FOR 
z 0 = ±1 

If the scattering amplitude has a singularity at 
one end of the physical region ( z0 = ±1 ), we can
not use formula (4) for Pz ( z ), and the method 
given in Sec. 2 for finding the asymptotic behavior 
of fz ( E ) obviously does not apply. We take a 
circuitous approach, trying again to reduce the 
problem to a simpler one-the study of the asymp
totic behavior of the coefficients of a power series. 

We set up, alongside Eq. (1), a power series 
with the coefficients 

g(E, w) = L fn (E) w", 
n=O 

(14) 

where w is an auxiliary complex variable. We 
establish a connection between g ( E, w) and 
F(E, z). At first let I w I< 1. 5) Substituting in 
Eq. (14) 

1 

fn (E)=-~- ) j(E, z)Pn (z) dz 
-1 

and changing the order of summation and integra
tion, we have 

E w _ 1 (" j(E,z)dz 
g ( ' ) - 2 ~~ ( 1 - 2wz + w2) '/, ' lwl< 1. ( 15) 

This expression is to be continued analytically 
into the region I w I ::>: 1. To do this we note that 
thP singular points of ( 1 - 2wz + w2 ) 1/ 2 with re
spect to the variable z are z 1 ( w) = ( w + w- 1 )/2 
and z2 (w) = 00 • When w moves along a radius 
from 0 to oo, then z 1 ( w) moves along a hyper-

5 )It follows from the unitarity condition [cf. (2a)] that the 
function g(E, w) has no singularities for [w[ < 1. 

-J 

' a 

0 

\A' +I 

" ""' ' b '-, 

Path of integration C in Eq. (15) for [w[ > 1. The dashed lines 
show the trajectories of the point w and the corresponding sing
ularity z,(w). The unit circle [w[ = 1 corresponds to the seg
ment - 1 .:S z .:S 1 in the z plane. Points A, B in the w plane 
correspond to points A', B' in the z plane. 

bola which intersects the segment -1; ::s z ::s 1 at 
the instant when I w I = 1 (see figure). This means 
that the path of integration is pushed along by the 
moving singularity z 1 (w ), and for I w I > 1 the 
integration in (15) is taken along the path C shown 
in the figure. 

A singularity of the function g ( E, w) arises[13J 
when the path C is pinched between a singularity 
z 0 of the amplitude f(E, z) and the point zj(w). 
This gives z 1 ( w) = z 0, from which we have 

W = Wo = z0 + (z02 -- 1.)'1'. (16) 

(Here the sign of the root must be chosen so that 
I wo I > 1.) 

For the discontinuity of g ( E, w) on the cut 
w 0 ::s w ::s + oo we can derive the formula 

z,(w) 

(" A(E,z)dz 
Img(E, w) = .J -T1- 2wz + w2)'i• 

zo 

(17) 

= [ z1(w)-z0 ]'/,~ A(zo+[z1(w)-z0]x)dx 
2w 0 (1-x)'l, ' 

where 

A(E, z) = [f(E, z+ie) -j(E, z-ie)]/2i. 

This formula essentially solves the problem in 
hand, by reducing it to elementary calculations: 
from the nature of the singularity of f ( E, z) at 
the point z 0 one determines the behavior of 
A ( E, z ) for z close to z 0, then finds Im g ( E, w) 
from (17), and thus the actual singularity of 
g(E, w) for w- w 0• Since g(E, w) is a power 
series with the coefficients fn (E), to find the 
asymptotic behavior of fn (E) for n ~ oo we then 
have only to apply the formulas (8) and (9) or (11). 

This method for finding the asymptotic behav
ior of fZ (E) is very general and can be applied 
independently of the location of the nearest singu
larity z 0• The method of Sec. 2 is simpler, how
ever, if z 0 lies outside the physical region. For 
z 0 = 1 the quantity w 0 is also equal to unity, and 
we must use (17). The results obtained in this way 



ANALYTIC PROPERTIES OF THE AMPLITUDE 1499 

are collected in the formulas (13) [for the asymp
totic behavior of fZ (E) of the form l a: ( ln l ){3 
with arbitrary a:, {3]. If z 0 = -1, there is a factor 
(-} in the partial amplitudes fZ (E). 

4. APPLICATION TO POTENTIAL SCATTERING 

Let us turn to nonrelativistic potential scatter
ing. There are two methods for determining the 
asymptotic behavior of the scattering phase shifts 
oz (E): 

1) for large l the motion is quasi-classical, 
and we can use the quasi-classical approximation 
for the phase shifts [16]: 

m _oo~ rV(r) 
6,(E) =--- dr 

fi2k ro ( r2- ro2) •;, ' 
l + 1/z 

ro=---· 
k ' 

2) for l ~ + oo the centrifugal barrier l ( l 
+ 1) r- 2 increases without limit, and all of the 
scattering occurs at the "tail" of the potential, 
i.e., in the region where the potential is weak. 
Therefore we can use the perturbation-theory 
formula [16] 

00 

nm (' 
bz(E)= -Tz J [11+'h (kr))2 V(r)rdr. 

0 

(18) 

(19) 

Whereas (19) always gives the correct asymp
totic behavior of oz, the quasi-classical formula 
(18) leads to incorrect results if V ( r) falls off 
too rapidly for r- 00 • 6 ) It can be verified that for 
a potential V ( r) with asymptotic behavior 
exp [- ( /H )a:) the formula (18) for oz is no longer 
valid for a: > 1, and for o = 1 (a potential with 
an exponential tail of the Yukawa type) it holds 
only under the additional condition k » p. 

Let us consider various forms of the potential 
V ( r ). 

Long-range Potentials 7 l: 

V(r) ~ G/r(w}v (r-+oo), '\' > 0. (20) 

For l ~ oo calculations by (18) and (19) lead to 
the same result: 

x l'nr(v/2) ( z ~-v 
61 =- ic 2f((1 +v)l2) To) ' 

lo = }!_ . ( 2 1) 
!! 

6 )This is already clear from the consideration of potentials 
that are zero for r > R. For potentials of the type of superposi
tions of Yukawa potentials it is shown in [17 ' 18 ] that the exact 
phase shift o1 approaches the Born approximation (19) for 1 __, "" 
not only along the real axis, but also on a large semicircle in 
the right half-plane. 

7 )The condition v > 0 is necessary in order for the incident 
and scattered waves to have the usual asymptotic (r __,"")forms. 
For v = 0 we get the Coulomb potential, which leads to a dis
tortion of the asymptotic form of the wave function.[16] 

Here we have introduced the notation K = mG/112; 

K has the dimensions of momentum. Turning to 
(13), by means of (21) we find the connection be
tween the "tail" of the potential V ( r) and the 
nature of the nearest singularity of the scattering 
amplitude. The results are given below in Eqs. 
(28) and (29). We see that the scattering ampli
tude for a potential with power-law decrease has 
a singularity precisely on the boundary of the 
physical region ( z 0 ~- 1 ). 

Let us consider examples of potentials for 
which the exact solution of the scattering problem 
is known: 

A. V ( r) = Gr- 1 (Coulomb potential). In this 
case we cannot directly apply the formula (28). 
As is well known ~16] 

' 
61(E) = argf(l + 1 + i'Y]), 

mG x 
T] = h2k = k; 

/L(E) = ~ f(l + 1 + i11) ~ !!_~. 
2i f(l+1-iT]) 2i 

Using (13a), we get from this 

j(E, z) ~ -1/zlle2i6,[ (1- z) J 2]-(1+i11l, z -+ 1. 

We note that the expression obtained for 

(22) 

f ( E, z) is valid not only near the singularity z 0 

= 1, but also in the entire z plane. This is a 
specific characteristic of the Coulomb potential 
and does not happen with other potentials. Another 
characteristic feature of the Coulomb potential is 
that the index of the singularity (22) depends on 
the energy. 

B. V ( r) = G/pr2, G > 0 (we shall consider 
only the repulsive potential, since in an attractive 
potential ~ r- 2 there is collapse into the center[tS] 
and difficulties arise in normalizing the wave 
functions). The exact solution is of the form =19] 

(!. = l + 1/z, 'Ao = l'2xht} 

and corresponds to a square-root type of singu
larity: 

f(E, z) ~ -n ~ [2(1- z)]-'1'. 
[l 

C. V ( r) = or- 1 + {3r- 2 (the foregoing potentials 
arc special cases of this one). The partial ampli
tudes are given by the formula cf. e.g., ...1 9]) 

ft (E)=~ exp [- -~i;"{Aoz_ - l f (yf.Z + },oz + 1/2+ iT])_; 

2i 1-+l''Az+t-o2 fCji'A2 +t-o2 + 1/z-i1J) 
I.= l + 1/z, l.o = (2mf, I !i2) •;,, TJ = ma I h2k. 

For l - oo we have: fz ( E ) ~ ( 2i) -tz 2i 7J, from 
which it follows that the most singular part of 
f ( E, z) at the point z = 1 is of the form (22) and 
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is determined (for a o;r 0) only by the "Coulomb" 
part of the potential, which predominates for 
r ~ oo. 

Potential of the Type 

G exp[- (!lr)"'] 
V (r) ~ --~~~-) v-~-- 0 <a< 1, v arbitrary· 

(23) 

In this case it is convenient to use the quasi
classical formula (18). We have for l » l 0 ( Z0 

= k/p) 

b,· = _ ~ { ~)'''( l )-(v+a/2) exp [ _ ( l)"l_ .. 
k \ 2a lo lo 1 ( 24) 

According to Sec. 2, this sort of singularity of 
fz (E) corresponds to an essential singularity at 
z 0 = 1, which manifests itself in an exponential 
increase of the amplitude as we approach z = 1 
on nonphysical sheets. For example, for 
a = 1M V ( r) = exp [ ~ ( f.JX) t/ 2 ] the Riemann sur
face of f ( E, z) has two sheets which branch at 
the point z = 1. Here the function f ( E, z) is 
finite at z = 1 on the physical sheet, and on the 
nonphysical sheet it increases as exp [(1/4 Z0) x 
(1~z)- 1 ]. 

Potentials with Exponential Asymptotic 
Behavior 

A. Let us consider a potential which is a con
tinuous superposition of Yukawa potentials: 

00 

rl'(r) = C: ~ o(r•')e i'.'!/!1'. (25) 
Jl 

From ( 19) we have 
00 / /') 

, :v.\· .,-(-l J.l-\1' 
~~~(LJ =- k· o(tl )Qt __ _ + '2X~ _k:1. (25a) 

i' 

From this it is clear that the "tail" of the poten
tial and the asymptotic behavior of the distant 
phases are determined by the behavior of a- ( p') 
for 11' - 1-1. Setting 

._r"--1 ; 1 \ i. ft'- ~~ \ 
rr(p') = --- (In -I for .r--+11 ( _ _,- = 

fl I' (Y) -- y ' I' 

[where v > 0 for the convergence of the integral 
(25)], we get the results given in Eqs. (30), (31). 
Using the fact that the application of the operator 
pa/811 to the potential V ( r) leads to multiplica
tion of the asymptotic form of V ( r) for r - co 

by ( ~Jlr), we can easily extend the results to the 
case of arbitrary sign of v. 

We now note that the requirement we have used, 
that the potential be capable of representation in 
the form (25), is too restrictive. Indeed, it is not 
satisfied by the Woods-Saxon potential, which is 

widely used in nuclear physics. In fact, the con
nection between the ''tail'' of V ( r) and the 
nearest singularity of f ( E, z) is of a more gen
eral character and does not depend on the as
sumption (25). 

B. Let us consider a potential of the form 

1'(r) = C/r{l +cxp[p(r-17)]}, 

which differs from the Woods-Saxon potential by 
an unimportant 81 factor r- 1. This potential has 
the expansion (25) only for R = 0, since for 
R > 0 the series 

Y(r) = G L (-)n-11enMRr-le nJ"' 

11 =--..:1 

converges only for r > R, and the coefficients in
crease exponentially with increasing n. Neverthe
less, by means of (19) we can get for oz (E) an 
expression in the form of an asymptotic series, 

N-i x ( n"-u~ ) ( ex J .Y H \ 
Ot(E) = "'Q, (-) 11 - enrtR Ol 1 -11- -~_'- --l- 0 _ __l__J.l_! 

Lj k '- \ 2/.:2 / . j\'2i+Z ) ' 
11=1 

valid for l » 11RN(ln N)- 1• It follows from this 
that the nearest singularity of f ( E, z) is a pole 
at z 0 = 1 + 11 2/2k2 with the residue~ (K/k) ellR, 
which is in agreement with the "tail" of the po
tential in question. 

Potentials with Finite Radius: 

. Gcxp[-(W)'"] (26) 
I (r) ~ -----~---- , u > 1. 

r(pr) v 

In this case we can use in the formula (19) the 
following asymptotic representation for the Bessel 
function 

1 I X ) i. ( ;1_-2 \ 
]; (xJ' ~~ ----- ( - CXJl - _ \. · r (J, -r 1) \ 2 4;. , -

Using the method of steepest descent to calculate 
oz, we get 

( epa '- r, 
Ot(E) = C(l) -l- I , a () = ----

' 2(a-l) ' 

cr = (a-- 1) (~)u./(a-l), e = 2. 718 ... , (27) 
a~t 

where C ( l) is a slower function of l than those 
written out (for example, a power law for a ::>: 2 ) . 
It follows from the form of oz (E) that the ampli
tude f ( E, z) is an entire function of z of order 

8 )It is more convenient to work with this potential, since it 
leads to singularities of f(E, z) of the simple-pole type, where
as the Woods-Saxon potential leads to second-order poles in the 
scattering amplitude. In principle this makes no difference to 
the course of the argument. 
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p and type u ( cf. e.g., [G] ). The only singular 
point of f ( E, z) is an essential singularity at 
infinity, and on a large circle f ( E, z) satisfies 
the inequality 

lf(E, z) I < exp} (a -1 +e) It /2a~~~21a/2(a-IJ}. (27a) 

t=2k2 (1-z), e>O. 

For Ql - oo (26) goes over into a potential which 
has a finite cut-off radius and is zero for r > H. 

= 11- 1• Then p = ~' u = k/fl, and the inequality 
(27a) takes the form 

lf(E, z) I < exp{(1 +e) lt/2~-t2 l'f,}. 

Summarizing the argument, we can say that for 
the potential 

V(r) ~ Gexp[-(W)"] (r-+=) 
r(w·)v 

the nearest singularity of the scattering amplitude 
is as follows: 1) for a < 1, it is the point z 0 = 1, 
which for a= 0 is a power or logarithmic singu
larity of a nature depending on v, and for 0 < a 
< 1 is an essential singular point; 2) for a = 1, it 
is the point z 0 = 1 _._ 11 2/2k2, and the nature of the 
singularity depends on v; 3) for Ql > 1 the func
tion f ( E, z ) has no singularity in the finite part 
of the z plane, but z = oo is an essential singu
larity. 

We now present the formulas which give in 
explicit form the connection between the asymp
totic behavior of the potential V ( r) for r - oo 

and the nature of the nearest singularity of the 
scattering amplitude: 

V(r)~G/r(w)' (v>O, v=/=-:!.n), 

j<'>(E, z) - - :1 _:~_ (~-)'[2(1- z)]'1~- 1 • 

r(v)sin(nv/2) k fl (~S) 

I (r) ~ G/r(wF" (n = 1, 2, 3 ... ) , 

. . , ( _) n X ( f.; )211 . . . "' 1 
l'·'!(l~,z)~-- -- - [2(1-"'J]" lln----· 
· (2n-1)! k fl 1-z' 

(29) 

F(r) ~ Ge f"/r(w)v (v =1=- n), 

i'''(F z) . .-...·- - --- -~ - ;,~. (f -"~~ )2
v (~0 - ::)'-I; (30) 

· ' l'(v).'tll JT\' r. 

l'(r) ~ r;e ''/r(w)" (n= !.:!..::, ... ). 

(-)n X (k\2n . .. J 
ii''(F -)~--.--.. - _ - 1 (;:;0 -.:;J·' lJn------; (31) 
- .... (n-1)! k f!J .:::,-.:; 

r(r)~ Gexp[-(~-tr)"]/r(~tr)v (a> t), (32) 

f ( F:, z) is an entire function of z of order 
p = Ql/2 ( Ql - 1) and type u = ( Ql - 1) x 
(k/Qifl )QI/(0'- 1). The constant factor here is 
G = ±g2, where g is the interaction constant; the 
sign + (-) corresponds to repulsion (attraction) 
at large distances; K = mG/n2, where m is the 
reduced mass of the particle being scattered by 
the potential; z 0 = 1 + 11 2/2k2; the other notations 
are as in (12) and (13). 

The analytic properties (as function of momen
tum transfer) of the amplitude for scattering by a 
potential of the type of a superposition of Yukawa 
potentials has been treated in a number of 
papers. [l7 •20 •21] For these potentials it has been 
shown that all of the singularities of f ( E, z) as 
function of z lie on the real axis; the nearest 
singular point of the scattering amplitude coin
cides with the singularity of the Born term and is 
located at z = 1 + ,}/2k2, and the next singularity 
is at z = 1 + 2112/k2 • Since to a complex singularity 
z 0 of the scattering amplitude there corresponds 
a contribution ~ e- 1~ in the phase shift oz for 
Z-oo (here~= ln[z 0 + (z5- 1) 1/ 2 ], Im ~.,; 0), it 
is clear that the amplitude for scattering by a 
real potential has no complex singularities. The 
fact that the next-nearest singularity of f ( E, z) 
is located at t = 411 2 is a specific characteristic 
of Yukawa potentials (25), and does not happen for 
a potential of general form. At the same time the 
results we have obtained on the position and 
nature of the nearest singularity of f ( E, z) are 
valid for arbitrary potentials. 

5. THE BEHAVIOR OF THE INTERACTION 
CROSS SECTIONS OF ELEMENTARY 
PARTICLES AT HIGH ENERGIES 

It is very interesting to see what information 
about the behavior of the interaction cross sec
tions of elementary particles at high energies can 
be obtained on the basis solely of the analyticity 
and unitari ty properties of the scattering ampli
tude. The first rigorous result in this direction 
is due to Froissart, 17J who showed that if the 
scattering amplitude f ( s, t) satisfies the Mandel
starn double representation with a finite number 
of subtractions, then for s - oo 

CT tot < l't (Ill SF, 
drrelas / rl~~ < ~-~s'•'(ln s)\ 0 =I= (l, JT, ( 33) 

where c 1 and c 2 are constants which do not de
pend on s. 

Greenberg and Low ~s] have remarked that the 
restrictions ( 33) follow already from the assump-
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tion that f ( s, z) is analytic in an ellipse 9 l with 
foci at the points z = ±1 and semiaxis major 
a = 1 + c/ s ( c is a constant with the dimensions 
mass squared). The derivations of the inequalities 
(33) given in [7, 8] are both rather cumbersome. 

By using the results of Sec. 3 we shall give a 
simple derivation of the Froissart inequalities. 

We start from the following assumptions about 
the analytic properties of the scattering amplitude: 

1) For physical s the function f ( s, z) is 
analytic inside the ellipse (£ ( s ) with the foci 
z = ±1 and semiaxis major a= 1 + m 2/s. 

2) In this ellipse f ( s, z) does not increase for 
s - oo more rapidly than a polynomial: If ( s, z) I 
< CsN, where C and N are independent of s. 

The last assumption corresponds to the stipu
lation that for fixed t the amplitude f ( s, t) satis
fies a dispersion relation with respect to s with a 
finite number of subtractions. It is convenient to 
generalize the second condition somewhat, by as
suming that there exists a monotonically increas
ing (for s - oo) function H ( s) such that for z 
inside the ellipse f£ ( s) 

IJ(s, z) I< H(s) (34) 

[for H ( s) = csN we come back to the second con
dition]. 

Let us see what restrictions on the function 
g ( s, w) [cf. (14)] are imposed by our stated con
ditions 1) and 2). It follows from (2a) and (16) that 
g ( s, w) is analytic in the circle I w I ~ 1 
+ (2m2/s) 112 • We shall show that it is bounded in 
this circle by the same function H(s) as f(s, z). 
Let 

1 :"( I w I :"( 1 + 12m2 1 s. 

From (15) we have 

11(~) . lci::J 
lg(s, w) i , 1[w[~ [i;(~~·)-z[',- · (35) 

Taking as the path of integration C two segments 
connecting the point z 1 ( w) with z = ±1, we get 

lg(s,zv)l<;;~~~{lzJ(w)-1[ +[zJ(zv)+1l'h} 

9 )Strictly speaking, we cannot regard it as proved that the 

amplitude f(s, z) is analytic in this ellipse. Starting from the 
general principles of quantum field theory, Lehmann [22 ] has 
proved that f(s, z) is analytic only in a much smaller (for s-> oo) 
ellipse with the semiaxis a'= 1 + c' /s 2 • Naturally the use of 
the analyticity in the Lehmann ellipse led Greenberg and 
Low ['] to restrictions on the increase of at and da 1 /drl ot e as 
which are much weaker than (33). 

from which we have for any value of s 

lg(s, zv)I<H(s) for 1:"( lzvl:"(1+}2m2 /s. (36) 

To estimate fz ( s) we now apply the Cauchy 
inequalities for the coefficients of a power series 
(cf. [Sl): if 

f(z) = ~ fnZ 11 

n=O 

is analytic in the circle I z I ~ p and M ( p ) 
= max(f(z)n=o, then fn ~M(p)p-n. Choosing 

lzl=p 
p = exp [ ( m 2/s )1/ 2 ] and using (36), we have 

lfz(s) I< ll(s) exp {-lfm2/s}. (37) 

The derivation of this inequality in [7 •8] is the 
most cumbersome part of the whole proof. We can 
proceed further in the usual way: we define L so 
that for l ~ L the estimate (37) will be stronger 
than (2a); for l ~ L we use (37), and for 0 ~ l 
~ L - 1 we use the estimate (2a). This gives 

L = }'s/m2 ln ll (s), 
~ 

if(s, t) i < ~ (2l + 1) ifz(s) I < v[t + o( 1 ) J <38) 
l=o In H (s) 

[the main contribution to the sum for s - oo 

comes from the first L terms; the terms with 
l ~ L give an amount smaller by a factor In H ( s )]. 
The final results are 

16n 
Gtot <---;-L2=cdlnH(s))2, 

dGe!as Cz , --< -.-sl•[ln H(s)P when 0 < 8 < :t (39) 
dQ sm8 

(in getting the last estimate we have used the in
equality 

IP1(cos 8) I< (2 I nl sin 8)'1•, 0 < 8 < n; 

see [JO], page 172). For H ( s) = csN the conditions 
(39) become the Froissart inequalities (33). 

It is interesting to note that even if f ( s, z ) 
were to increase inside the ellipse as exp (as Ll' ), 

so that there could not be even any question of 
having dispersion relations with a finite number 
of subtractions, nevertheless a tot could increase 
for s- oo only by a power law: atot < c 1s 2cl' 

The experimental data show that for s - oo the 
total cross sections of all processes approach 
constant values. This behavior of atot does not 
follow directly from the inequalities (33), and at 
present it is unknown whether it is a consequence 
of the analyticity and uni tari ty conditions alone. 
Various authors :9•23 •24= have attempted to obtain 
stronger forms of the Froissart inequalities. 

The paper by Kinoshita, Loeffel, and Martin =sJ 
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starts from the assumption that If ( s, z) I is 
bounded by a polynomial in s in a part of the z 
plane much larger than the ellipse it ( s ) con
sidered here, and gets a stronger inequality than 
(33) for daelas/dS1 for 0 < (} < 1r, but has no 
success in improving the inequality for atot· We 
shall give an example which proves that the re
quirements 1) and 2) which we have formulated, 
together with the condition of unitarity in the s 
channel, still do not exclude the possibility of in
crease of atot for s - 00 • 

Let us consider a function f ( s, z) which cor
responds to a condensation of an infinite number 
of singularities of the power-law type ~( z0 

- z )-v+p/2, p = 0, 1, 2, ... , at the point z0 = 1 
+ M 2/s: 

j(s,z)=F(s)( zo-1 )v 
zo-z 

11 mz f' a=( 1 + V 1-M2 J ' 

~=( 1-;: r~ O<m<M. (40) 

For v = 1 the strongest singularity at the point 
z = z 0 is a pole, and the function f ( s, z) can 
serve, for example, as a model of the amplitude 
for NN scatterin~. For v = 0 the strongest singu
larity ~ ( z0 - z )1 2, and we get a model for the 
absorptive part of the amplitude A(s, z). 10 l 

10)An analogous model is mentioned in [24]. We note that 
the partial amplitudes a 1(s) that correspond to the absorptive 
part A(s, z) must satisfy a more severe restriction than (2a): 
0 < a1(s) <;I for all l. A verification of this condition can be 
made in the following way. From (40), setting v = 0, and also 
for simplicity m = M, we get without difficulty that 

a0 (s) = F(s) -In-- , a1(s) :::::: ao(s) for l « lo, [ s H(s) ]-• 
M 2 F(s) 

where l 0 - [(s/M2 ) In {H(s)/F(s)!J"''. On the other hand, to find 
a1(s) for l « 1 (sic) we can use the asymptotic form of P1(z) 
and get 

a1(s) = : ) A (s, 1- :~) lo ( 2! V:) dT 

= a0 (s) ( 1 + .:.;.-)-' exp{- ( 111 + ~:-- 1Jln !!S!l), 
A , ,\ , F(s) ( 

where A(s) = ¥2(s/M2 )y, In [H(s)/F(s)]. It can be seen from this 
that as l increases a 1(s) decreases monotonically and remains 
positive, and therefore it suffices to choose F(s) so as to sat
isfy the inequality a 0(s) <( 1; this is assured by the inequality 
(4l). Thus we have an example of an absorptive part with re
spect to the variable s, 

A(s, t) = F(s) exp{ (1-l'i- ttto) In H(s) }• 
F(s) 

fo > 0, 

From (40) we have: a) f(s, 1) = F(s); b) for 
all points z in the ellipse it ( s) we have f ( s, z) 
s H ( s ), with equality only at the point z = 1 
+ m 2/s. Thus (40) satisfies the conditions 1) and 
2) for any function F ( s) that satisfies the in
equality IF ( s) I s H ( s ). 

Let us now use the unitarity condition (2a). 
Since f ( s, z )/f ( s, 1) > 0 in the physical region 
-1 s z s 1, we have lfz(s) Is lf0 (s) I. and it 
suffices to verify the condition (2a) for l = 0. For 
s - oo we have f0 ( s) ~ F ( s )/s In H ( s ), and from 
this we get 

IF(s) I ~slnH(s). (41) 

Setting H ( s) = csN, N > 1, we get the follow
ing "manner of increase" of the total cross sec
tion, compatible with the conditions 1), 2), and 
Eq. (2a): 

Imf(s, 1) = F(s) Is= fIns, 

I~ !max = (N- 1) [1 -1;1 - m2 I Jf2]-': 

O'tot --+- 16nflns, O'elas/O'tot --+- f/2fmax< 1fz, (42) 
S-->co S-->00 

A comparison with (33) shows that the increase of 
atot in this example is not the strongest possible. 
The reason for this is that the part of the ellipse 
it ( s) in which If ( s, z) I increases in proportion 
to H ( s) = CsN decreases without limit as s - 00 • 

From the point of view of the complex j plane 
the behavior of an amplitude of the type of (40) 
corresponds to a double pole which passes through 
the point j = 1 at t = 0: fj (t) ~ (j- 1- yt)- 2 

(I. Ya. Pomeranchuk called the writer's attention 
to this). 

In conclusion the writer expresses his sincere 
gratitude to I. Ya. Pomeranchuk, I. S. Shapiro, and 
N. N. Me'i'man for an interesting discussion and a 
number of helpful remarks. I would also like to 
thank E. I. Dolinski!, who read the paper in manu
script and suggested a number of improvements. 
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