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The effect of interelectron interaction on the absorption of x rays is considered for a simple 
model of a metal. It is shown that no electron or hole bound states are possible. The spec­
trum near the absorption edge is determined. 

THE absorption of short-wave light is usually 
described as a transition of an electron between 
energy bands in a crystal. The minimum frequency 
w = Ef- Ei of a transition to the lowest of the un­
filled states is called the absorption edge, and the 
absorption coefficient experiences a jump at this 
frequency. For x rays, Ei constitutes a narrow 
band corresponding to an internal atomic level. In 
metals the absorption edge corresponds to the tran­
sition from this level to the Fermi surface. 

In a frequency region which is not too far from 
the absorption edge (when the photoelectron energy 
is comparable with the Fermi energy), the inter­
action between the electrons cannot be regarded as 
a small effect, and in principle the single-electron 
picture cannot be employed. However, in a qualita­
tive treatment it is possible to attempt to take into 
account the interelectron interaction by perturba­
tion theory. Such an account consists intuitively of 
first considering of the entire collision between 
the photoelectron and the Fermi electrons that 
cause its "damping." It is then necessary to take 
into account the contribution of the processes at 
which two or more photoelectrons or other excita­
tions are produced, and also the influence of the 
interaction between the photoelectron and the 
"hole" in the shell of the ionized atom. 

We shall first establish the connection between 
the absorption coefficient and the polarization 
operator in the crystal (this question arises be­
cause we cannot use the concept of macroscopic 
electromagnetic fields in the case of short waves, 
see[tJ, Sees. 28, 29). We shall then consider, for 
the simple model, the corrections to the expression 
for the interband transition. 

1. ABSORPTION COEFFICIENT 

Let us consider a system of electrons in a 
periodic field, through which passes a beam of 
x rays of frequency w . The interaction in such a 

system can be written in the form 

e ~ ji(r, t)Ai(r, t)d3r, 

where Ai (r, t) -vector potential of the total electro­
magnetic field in the system (n = 1, c = 1, a gauge 
with cp = 0 is used throughout). Then the field equa­
tions in the medium follow immediately from the 
Dyson equation for the photon Green's function. 
We write them for the time-dependent Fourier 
component Ei (r, w): 

- w2 ~ P;k (r, r', w )Ek (r', w) d3r' = 0. 

Here Pik(r, r', w) -polarization operator of the 
crystal; in view of the translational symmetry, 
Pik(r, r', w) = Pik(r +a, r' +a, w), where a­
lattice vector. 

(1) 

Let the crystal have the form of a plane-parallel 
plate of thickness L (Fig. 1); let us find the attenu­
ation of a plane wave E~,Oleiwx, passing through the 
plate. We choose L such that this attenuation is 
small. Introducing the induction 

D; (r, w) = E;(r, w) + ~ Pik (r, r', w )Ek(r', w) d3r', 

we rewrite (1) in the form 

(.1 + w2)Di(r, w) 

!! 

z 

FIG. 1 
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We are interested in the solution of this equation 
in vacuum (where D = E), to the right of the plate, 
where by assumption it should differ from the in­
cident wave. To calculate the correction we can 
put in the right side of (2) E = (0, E~0 l eiwx, O), 
after which we get 

Dy<1>(r, w) = Ey<1>(r, w) 

E <o> ~ eiw 1r -••I 
- Y j ( 1 ) ioox' d3 d3r' - -4- I I yy r1, r , w e r1 , n r- r 1 

3 82 
/yy{r,r',w) 1= w2 ~ (-8---bkyLl)Pky(r,r',w). 

k=! xk ay 

(3) 

(4) 

In addition to the main beam, there will be emit­
ted from the crystal scattered beams which satisfy 
the Laue condition (and also incoherently scattered 
light). To exclude these, let us average (3) in a 
plane perpendicular to the transmitted beam, i.e., 
with respect to the variables y and z. Using the 
relation 

(' ( e1<D lr -r,l 2ni 
J ) ,----,-dy dz = -- eiw(>:-:<,J, I r-r! I w 

(I) =I= 0, 

we get 

(5) 

The quantity Pik(r, r', w) can be represented in 
the form 

where G0-Green's function of the electron in a 
periodic field. 

co (r r' w) = ~ \' d3k 1Jl,k (r) 'lflsk * (r') (11) 
' ' LJ j (2n)3 w-e. (k) ± iO • • 

Here ljlsk(r)-Bloch functions; the plus sign in the 
denominator is taken for the free states and the 
minus sign for the occupied states. 

After integration with respect to w 1, there are 
left in (10) only those terms containing products of 
the functions of the occupied and free states. In the 
study of a small range of frequencies near the edge, 
the essential transition is from a single internal 
level, which we shall now take into account. Let 
the term of the sum in (11) with s = 0 correspond 
to this level. From (8)-(11) it follows that 

(0)- 2 3~ d3k IM 19 .. ( (12) 
Cl - ne w LJ (Zn)3 sk,o u Bs- 8o- w), 

s 

Msk,o = ~ 'lflsk* («V)¢0eiqr d8r. (13) 

The summation in (12) is carried out only over the 
free state. 

If we assume approximately that the matrix 
element of the transition depends only on the en­
ergy, then u<o> ~ N(E) P(E), where N-density of 
states, P = IMI 2-transition probability, and 
E = w- Wlim· When account is taken of the finite 
lifetime of the "hole" on the internal level, the 
a-function in (12) is replaced by the dispersion 
factor 

1 r 
lt (e.-eo-w) 2 +f2 

Ptk b (k, w) = ~ Ptk (r' r'' w) e-ikrei(k+9nb)r' dar d!'r'. (6) where 2r-width of the internal level. 

Substituting (4) and (6) in (5), we obtain 

1 
E1,<'l(x, w) = 2. iw3Pyy0 (q, w)Ey<0leiwxL, q = (w, 0, 0) 

and the ratio of the intensities of the incident and 
transmitted beams is 

I/ Io ~ 1- w3ImPyy0 (q, w)L. (7) 

From this we get the "absorption coefficient" 

11 = w3 ImPyy0 (q, w), (8) 

where, in accordance with (6) 

Pyy0 (q,w)= ~ Pyy(r,r',w)eiw(x-x')d3rd3r'. (9) 

The formula for the interband transition is ob­
tained from ( 8) by using the expression for the 
polarization operator in the zeroth approximation: 

P;k<0>(r, r', w) = - ie2 ( dw1 (~ G0(r, r', Wt)) 
) 2n ax; 

x(_!!_,co(r',r,w1 -w)), (10) 
axk 

2. CORRECTION TERMS 

According to (12), absorption in the metal begins 
jumpwise at a frequency equal to the sum of the 
Fermi energy and the energy of the internal level. 
To investigate the corrections to this expression, 
let us consider a simple model, in which there are 
only two bands-the internal level and the "con­
duction band," in which the energy assumes posi­
tive values. The electrons in the conduction band 
are regarded as free (i.e., the periodic field of the 
ions is taken into consideration only as the average 
positive charge that ensures neutrality of the sys­
tem). A weak Coulomb interaction is assumed be­
tween the electrons (e 2/v « 1, where v-velocity 
on the Fermi surface). Th? effects of the aniso­
tropy and of the interaction with the lattice vibra­
tions on the x-ray absorption were investigated 
previously (see, for example, [ 2l). 

The first-order perturbation-theory diagrams 
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a b 

FIG. 2 

are shown in Fig. 2. Before we proceed to estimate 
these diagrams, we make the following remarks: 
inasmuch as we are considering an inhomogeneous 
system, we must write down in the coordinate 
representation expressions corresponding to differ­
ent diagrams, and then obtain with the aid of (8) and 
(9) the corrections to the absorption coefficient. 
However, in the model which we have assumed, it 
is necessary to retain in those electron Green's 
functions, whose arguments contain the photon fre­
quency w, only the "hole" term in the expansion 
(11), corresponding to the internal level; in the 
denominators of these terms, the large value of w 
is offset by the energy E 0 of the internal level. To 
the contrary, if the argument of the Green's func­
tion does not contain w, we are left only with the 
''electronic'' term corresponding to the conduction 
band, and their denominators do not contain the 
large quantity E0• Therefore the corrections to a 
are similar to the expressions for the diagrams in 
the momentum representation. 

For example, for the diagram of Fig. 2b we have 

2 \ dwi \ dw2 \ d3 PI \ d3 p2 \ d3 k * 
- e J 2n J --zrt J (2n)a J (2n)a J (2n)a M p,.o [WI- e (Pt) 

+ iO sign (PI! - pF)ri (wi- v- iOtiD (k, w2) 

X (wi- w2- e (P2) + iO sign (p2~- pF)ri 

X (wi- w2- v- iOri Mo,p, ~ 'i'p,* (ri) eikr,'IJlp, (ri) dar I 

X~ Cj)o• (r2) e-ikr,cp0 (r2) d3r2• (14) 

Here i/Jp-electron functions, qJ 0-hole functions; 
v = w + E0• If we choose a plane wave as the con­
duction-band function i/Jp, then the integral with 
respect to d3r 1 yields (211') 3 6 (p2 - p 1 + k). The 
integral with respect to d3r 2 can be regarded as 
independent of k. The matrix elements M are 
determined from (13), where, in accordatd~ with 
the radiation condition, the asymptotic value of 
i/Jks = i/Jp must be chosen in the form of a sum of a 
plane and converging wave. 

The function D(k, w) is used in place of the 
Coulomb expression 4rre2/k2 to describe the effec­
tive interaction between the electrons, which, as is 
well known, is of the form 

D(k, w) =4ne2 / [k2 +x2ll(k, w)], 

ll(k,w) = 1- Zwkln I w + vk I+ inMe(vk -lwl) 
v w- vk 2vk ' 

(15) 

We now proceed to estimate the corrections and 
consider first the diagram 2b. The interaction be­
tween the extracted electron and the "hole" can 
lead in principle to the appearance of absorption 
lines corresponding to transitions to the discrete 
levels of this system. The formation of such 
"bound states" in the metal is hindered by the 
screening of the interaction by the conduction elec­
trons. The screening is established within a time 
on the order of 1/w 0 = v'37T(e 2/vr112/4EF· On the 
other hand, the interaction itself lasts a finite time, 
which at any rate does not exceed (in order of 
magnitude) the lifetime 1/r of the internal level. 
We shall show presently that in those cases when 
the screening does not have time to be established, 
the contribution of the diagram is small, and no 
discrete levels arise. 

The correction to a from the diagram of Fig. 2b 
is the imaginary part of (14). In the case of a 
Coulomb interaction (i.e., D = 4rre 2/k2), the dia­
gram would have a singularity ln2 [(v- EF)/EF] at 
the edge frequency. We shall therefore obtain es­
timates only for this frequency, v = EF· Actually 
the integral (14) is always finite even in the case 
of Coulomb interactions, owing to the finite width 
of the internal level. Let y = r /EF· Then when 
y « 1 the integral will have an order of magnitude 
e 2 (ln y) 2 /v, and when y » 1 the order of magnitude 
is e 2/vy 112 = e 2 v m/r. 

We now turn to the complete expression with the 
function D(k,w) determined from (15). When 
r « w 0, the screening has time to become estab­
lished, and the order of magnitude of the diagram 
(Fig. 2b) is (e 2/v) 312• In the opposite case, r :<, w 0, 

the diagram has the order of the Coulomb integral 
2~ ' i.e., e v m/r < e 2/v for large y and e 2 (ln y )2/v for 

small y . This latter quantity is also small, since 
y cannot be smaller than w 0/EF::::: -Je2jv. The 
attraction by the hole is therefore always insig­
nificant in our model. 

It is known that the Coulomb interaction in a 
metal should be sufficiently well screened. Other­
wise the metal will be generally unstable and turn 
into a dielectric [ 3]. Actually the Bohr radius for 
quasiparticles should be larger than the Debye 
radius. This condition is a result of the inequality 
e 2/v « 1 which we have used. 

Since vertex-type inserts corresponding to in­
teraction with an internal level can be neglected, 
the corrections to the absorption coefficient are 
determined by the corrections to the electron 
Green's function. We write the latter in the form 

[w- e(p)- Z:l(w,p)+ i2: 2 (w,p)]-1. 

In the model in question the value of ~ is small 
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and is determined by the insert in the electron 
line, shown in Fig. 2a. ~ 1 can be included in E, 
and the absorption coefficient takes the form 

a=const·lmr. P(e)N(e)de . (16) 
v- e + i~z(v, "f2me) ., 

Using the spectral representation of the function 
D (k, w), we obtain 

~ ( )- 1 -~ D(k,w) dwd3k 
"-'zv,p-m~J ---

v- (f)- 8[ (2:rt)4 

\ d3k . 
= J (Z:rt) 3 ImD(k,v-e1). (17) 

e,<e1<v 

Here E1 ,::; E(p) + vk. 
Near the absorption edge, i.e., for v close to EF, 

the region of importance in (17) is k .<:, K, and then 
v - EF « vK. According to (16) we have 

1 ( :rt -1 c ) a"'- --+tan --- , 
:rt 2 V- 8F · 

The absorption is reduced because of the attenua­
tion of the photoelectrons with energy larger than 

EF· 
For v close to E F + w 0, it is necessary to take 

into account in (17) the residue in the plasma pole. 
We have 

e2 roo ll'e + l'v - roo I ~z= -- -ln B(v-eF-roo). 
v 2n: l" e -l'v ....:... roo 

This expression is valid when IE - vI ;S w 0• At the 

frequency v = v 0 = EF + w 0, the absorption experi­
ences a jump (of order R/v relative to the total 
width), and near the jump a ~ - x ln x, where 
x = (v- v 0)/v 0, v > v 0• The absorption is increased 
by the transitions in which plasma oscillation is 
excited in addition to the photoelectron. The proba­
bility of transitions were calculated by Sobel'man 
and Feinberg [ 4]. 
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