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A kinetic theory of the breakdown of noble gases by an intense light beam is presented. It is 
shown that the optical breakdown mechanism is in general similar to the familiar high
frequency breakdown mechanism. The investigation is carried out on the basis of a classical
mechanics electron kinetic equation. Quantum effects are negligible if nw « Ei, where w is 
the optical radiation frequency and Ei is the ionization potential of the gas atom. The pres
ence in the equation of small parameters that are characteristic only of breakdown at optical 
frequencies permits one to obtain an exact solution of the kinetic equation. The dependence 
of the threshold light-wave electric field 0 on the neutral gas atom density N is derived. 
This dependence can be expressed in the form exp ( a/0) = bN2 o 1716 where a and b are 
constants that depend on the nature of the gas. The theory agrees with the experimental re
sults for the breakdown in argon and helium. 

1. INTRODUCTION 

THE breakdown of noble gases at optical frequen
cies was investigated experimentally by Minck[ 1] 

and by Mayerand and Haught[ 2J. In these experi
ments, an intense light beam (wavelength 
A. = 6934 A) was focused on the center of a 
chamber filled with the investigated gas. The 
electric field of the light wave caused the gas to 
break down at the focus. The breakdown was man
ifest in a bright flash of light and in a cascade-like 
growth of the electron density. The breakdown 
took place when the electric field intensity of the 
focus exceeded a certain threshold value. The de
pendence of the threshold electric field on the 
pressure of the argon and helium was investigated 
in the range from 0.1 to 1000 atm. The purpose of 
this paper is to explain these relationships. 

We note first that the gas breakdown cannot be 
caused by photoionization: the epergy of the light 
quantum corresponding to 6934 A is merely 1.8 
eV, whereas the ionization energy of argon is 
15.76 eV, while that of helium is 24.58 eV. The 
multiple absorption of photons likewise plays no 
role[Z]. Apparently, the mechanism of breakdown 
at optical frequencies is close to the mechanism 
of ordinary high-frequency breakdowns [3]. Qual
itatively the breakdown process can be described 
in the following fashion. A certain residual elec
tron density always appears in the gas at the in
stant when the light pulse is turned on. The elec
tric field of the light wave increases the energy 
of the electrons to the ionization value Ei. The 
neutral atoms are ionized, and the electron inten-

s ity increases. The electrons are again acceler
ated to the ionization energy, the atoms are ionized, 
etc. The gas breaks down when the increase in the 
electron density due to the ionization exceeds the 
decrease in the electron density due to diffusion 
from the region of the strong electric field at the 
focus. Electron losses due to adhesion are negli
gible in noble gases. 

A distinguishing feature of breakdown at optical 
frequencies is that this phenomenon is determined 
to a considerable degree by the excitation proc
esses. The electrons attaining the energy Eex of 
the first excited state of the gas atoms can lose 
their energy to excitation without causing ioni

zation. It turns out that in the field of a light wave 
the energy of the electrons increases "slowly": 
the time required for the energy to rise from Eex 
to Ei is much longer than the time during which 
the electron loses energy to excitation 1> (the low 
efficiency of electron acceleration is connected 
with the fact that the frequency of the light wave 
is very high). Therefore most electrons give up 
energy to excitation without attaining Ei. In other 
words, the electron energy distribution function 
F (E) experiences an abrupt decrease in the re
gion E > Eex· This is precisely why we can solve 
exactly the problem of the breakdown limit by 
using the kinetic equation for the electrons. 

To determine the breakdown limit, we can 
assume that the electron density ne is small and 
linearize all equations with respect to ne. Fol-

1 lin experiments on gas breakdown by a radio
frequency field, the situation is reversed (see Sec. 3). 
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lowing this procedure, we neglect recombination 
and collisions between charged particles. We do 
not take into account plasma effects such as ambi
polar diffusion, assuming that the Debye radius is 
large compared with the characteristic dimension 
r 0 of the region in which the electric field differs 
from zero. 2> We also disregard collisions between 
electrons and excited atoms (this effect is essen
tially quadratic in ne, so that the rate of formation 
of the excited atoms, together with their density, 
is proportional to ne). 

2. KINETIC EQUATION FOR ELECTRONS 

Let us investigate the influence of a homo
geneous periodic electric field ft = ft 0 sin wt on 
the electron distribution function (the electric 
field of the light wave can be regarded as homo
geneous if v « c, where v-electron velocity and 
c-speed of light). The electron velocity distri
bution function f ( v) satisfies the equation 

8f - eS' o sin rot 8/ = I (f)' (I) 
8t m 8v 

where I (f) is the electron-atom collisions inte
gral, and the remaining notation is standard. Since 
the frequency of the elastic collisions usually ex
ceeds the frequency of the inelastic collisions, we 
disregard the latter for the time being. 

We introduce in velocity space a polar system 
of coordinates (v, B, q;) with polar axis directed 
along the vector Cf0. In this coordinate system 
Eq. (1) takes the form 

{)j eft 0 ( {)j sin 8 at ) (2) 
7ft - m sin rot {)u cos 8 - -v- 88 = I (f). 

The collision integral I( f) vanishes when we sub
stitute in it any spherically symmetrical distribu
tion function. Therefore, when fS' 0 = 0 the station
ary solution of (2) is any spherically symmetrical 
function f0 ( v). 

From a comparison of the first and second 
terms in the left side of (2) it follows that the 
second term is small compared with the first, if 
the electric field ft 0 is sufficiently small, namely 
if 

efto / mro < v, 

where v is the mean square electron velocity, 

2 )The De bye radius rD is proportional to n e- 112 • It is 
therefore clear that at sufficiently low electron density, the 
inequality rD > r 0 is satisfied. The inequality rD > r0 is sat
isfied when ne < 1014 em·' under Minck's experimental condi
tions[•] and when ne < 1012 em-• under the conditions of the 
Mayerand and Haught experiments[2l. 

that is, the deviation of the distribution function 
from f0 ( v) can be rep res en ted by a series in 
powers of S' 0: 

f(v) = fo(v) + ft(v, 8) + h(v, 8) + ... , 
where 

etc. 
The equation for the first-order correction 

f 1 ( v, B) is of the form 

8ft eS'o 8fo 
-8 - -- sin rot cos e -a = I (/1). 

t m v 
(3) 

We assume that the atoms are infinitely heavy. In 
this case, as shown by Bayet et al [ 4], the collision 
integral has the following properties: 

~ sin 8 I ff(v, 8)] d8 = 0, (4) 

where f ( v, (} ) is an arbitrary function of v and 
B, and 

I[g1(v) cos 8] = -gz(v) cos 8, (5) 

where g 1 ( v) is an arbitrary function of v, while 
g 2 (v) is connected with g1 (v) by the relation 

v(v) = Nvatr(v). 

Here N-density of the neutral atoms and 
CTtr ( v) -eros s section for the transfer of momen
tum from the electron to the atom (transport cross 
section). 

Taking (5) into account, we seek the solution of 
( 3) in the form 

/!(v, 6) = g(v) cos e. 
The function g( v) satisfies the equation 

iJg eS'o 8/o . at+ V ( V) g = m au Sill rot. 

Hence 

eft o 8/o . 
g=- ---(wcosrot-vsillrot), 

m(ro2 + v2) 8v 

eS'o ato . 
/ 1 (v,8)= -cosS(vsillrot-rocosrot). (6) 

m(ro2 + v2) av 

The second-order correction f2 ( v, B) is de
termined from the equation 

8/z = eS' o ( 8/f cos 8 - sin 8 8/f ) sin rot +I (12}. 
{)t m {)v v av 

Let us average this equation over the angles and 
over the period of the electric field 

a r . e~o r 8 -a ) Sill 8 </2) d8 = -- J sin 8 COS 8- <sin rot/!) d8 
t 0 m 0 av 



1474 D. D. RYUTOV 

e~o ( sin2 8 {) 
-- J ---<sinrot/i) dS 

m 0 v a8 
(7) 

(the angle brackets denote averaging over the 
period of the electric field). We have taken ac
count of the fact that, in accordance with condition 
(4), the collision integral averaged over the angles 
is equal to zero. 

Simple transformations enable us to represent 
(7) in the form 

{) n e[g n a 
- ~ sin 8 <M de = --0 ~ sin 8 cos 8 -a v2 <sin rot / 1) d8. 
at mv2 0 v 

(8) 

It follows from (6) and (8) that, accurate to terms 
of second order in fS 0, 

a n 
- ~ sin 8 <f(v, 8)) d8 
at o 

e2fSo2 a c 
= -vv2Jsin8(/(v,8))d8 

6m2ro2u2 av 0 

I we have used the inequality w » v). 

(9) 

The electron energy distribution function, 
averaged over the period of the electric field, is 
connected with f ( v, (]) by the relation 

2:n:v n 
F(E) = m ~ sin 8 (/(v, 8)) d8, 

Substituting this relation in (9), we get 

a a -a F(E) 
-F(E) = -D(E)l/E---at aE aE E 11, ' 

( 10) 

2e2~2 (- 2E )''• D(E) = --ENatr(E) - , 
3mro2 m 

( 11) 

where fS = fS 0 /f2 is the mean-square electric 
field intensity (we have introduced this quantity 
exclusively for an easy comparison with the ex
perimental results of Mayerand and Haught[ 2], 

who determined just fS, and not fS 0 ). 

In the derivation of ( 10) we disregarded the 
quantum character of the absorption of energy by 
the electron. The quantum effects are significant 
only at lower electron energies, when E :S nw. In 
the cited experimentsC 1•2J nw = 1.8 eV, that is, 
Eq. (10) is applicable at practically all energies 
that are significant in the problem of breakdown 
of noble gases. 

The region of applicability of ( 10) is bounded on 
the high-pressure side. As shown in [ 5J, if 

N1hv > ro (12) 

the absorption of energy by the electrons appa
rently begins to be affected by the gas -atom cor
relation effects characteristic of condensed media. 
These effects are not taken into account in (10). 

Recognizing that the electron velocities of im
portance in the breakdown of the gas reach 2-3 
x 108 em/sec, we obtain from (12) the limit for the 
applicability of ( 10) on the high-pressure side, for 
the conditions of the experiments of [ 1•2] 

( w = 2.7 x 1015 sec-1 ): 

(13) 

If we take into account inelastic collisions as 
well as electron diffusion, the kinetic equation for 
the electrons takes the form 

a a I aF(E,r) Nr EE' -F(E,r)=-D(E,r)EI'----+ J[crex(, ) at aE aE Elf, 0 

( 2E' ) 1
;, 

+2cr;(E,E')] m F(E',r)dE'-N[aex(E)+a;(E)] 

X ( ~ r F(E, r)
1

+ d(E)!1F(E, r). 
' 

(14) 

Here 

1 (2E/m) 11• 
d(E) = 

3 Natr(E) 
( 15) 

is the coefficient of diffusion of electrons with 
energy E, .6.-Laplace operator, and <Tex(E) and 
o-i (E) -excitation and ionization cross sections. 
The functions a-ex ( E, E') and o-i ( E, E') are de
fined as follows: <Tex ( E, E') dE is the cross sec
tion of the process in which an electron of energy 
E' excites an atom and is left after the excitation 
with an energy in the interval from E to E + dE; 
<Ti ( E, E') dE is the cross section of the process 
in which an electron of energy E' ionizes an atom, 
and the energy of one of the electrons in the final 
state lies in the interval from E to E + dE. The 
factor 2 preceding o-i ( E, E') in (14) takes into 
account the presence of two electrons in the final 
state (we have neglected ionization with produc
tion of other than a singly-charged ion). It is ob
vious that 
00 00 

~ 11ex(E,E')dE = 11ex(E'), ~ a; (E, E') dE = a; (E'). ( 16) 

From the energy conservation law it follows that 

11ex (E, E') = 0 for E > E' - Eex, 

a; (E, E') = 0 for E > E'- E;. ( 17) 

The function F( E, r) should satisfy the con
ditions 

lim EF(E, r) = 0, (18) 
E-+oo 

• I a F(E,r) 
;~ EI•D(E,r)fj£~=0. (19) 

The first of these conditions is a consequence of 
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the finite number of electrons (the integral 
00 

J F (E) dE should converge). The second condi
o 
tion can be obtained in the following manner: We 
integrate (14) over the energies, taking the rela
tions (16) into account. The result of the integra
tion takes the form 

fJF(E,r) [af 
lim D(E, r)E'Iz---,1- =- - J F(E, r)dE 
E-+0 aE R , fit o 

00 vu 00 -N~ a;(E) ( --;;;) F(E,r)dE- ~ d(E)!J.F(E,r)dE]. 
0 0 

It is obvious that the time derivative of the elec
tron density 

ane a r 
-=-J F(E,r)dE at at o 

is precisely equal to the sum of the last two terms 
in the square brackets, from which follows condi
tion ( 19). 

3. BREAKDOWN CONDITION 

The threshold value of the intensity of the elec
tric field is determined from the conditions for 
existence of a stationary solution of equation (14): 
oF/ot = 0. We assume for simplicity that in some 
region of space the radiation intensity does not 
depend on the coordinates, and that outside this 
region the intensity is equal to zero. Such an as
sumption signifies that the quantity D which enters 
in (14) and which is proportional to the radiation 
intensity [see (11)] does not depend on the coor
dinates in the region where the radiation intensity 
differs from zero, that is, a stationary solution of 
(14) can be sought by separating the variables: 

F(E, r) = F(E)R(r). 

The equation for the function F ( E) is 

a ,,-a F(E) rf[ , 2 E' 1 -D yE--=-+1\ J Gex(E,E )+ a;(E, ) 
fJE fJE yE 0 

X v 2E' F(E')dE' -1V[aex(E)+a;(E)]V 2E F(E) 
1n 1n 

+F(E) d(E) !J.R(r) = 0. 
R(r) 

The last term of this equation can be written 

F(E)d(E) ~R(r) =- _!!_d(E)F(E), 
R (r) ro2 

where a-positive constant of the order of unity, 
the value of which depends on the boundary condi
tions. 

We note that the breakdown condition can be 

obtained by solving the stationary equation only 
in the case when the duration T of the light pulse 
greatly exceeds the time of establishment of the 
stationary state, which has in order of magnitude 
d/d: 

T ';;> ro2 / d. (20) 
Introducing the notation 

ad(E) ( 2E )'!, 
y(E) = --2 , fex(E) = N - aex(E), 

ro 1n 

( 2E )'/, ( 2E' )';, 
f;(E) = N m a;(E), fex(E,E') = N -;;: aex(E,E'), 

( 2E' )'/, 
f;(E,E')=N---;:; a;(E,E'), (21) 

we can rewrite the equation for the function F ( E) 
in the form 

!_D (E)E'f,_a F(~) + ~ [fex (E, E') + 2f; (E, E')] F (E') dE' 
fJE fJE El• 

0 

-[fex(E) +f;(E)]F(E) -y(E)F(E) =0. (22) 

The problem consists of finding the conditions for 
the existence of a function F( E) that satisfies 
(22) and the conditions (18) and (19). 

We shall show that in the pressure region in
vestigated in the experiments of [t, 2] the function 
F (E) has the following properties: when 0 < E 
< Eex it increases approximately like E 112, and 
when E > Eex it decreases exponentially 

F(E)= exp[- ~ ( E -;;oEex f'J, (23) 

with E0 « Ei - Eex· 
An important role is played in what follows by 

the integral 
00 

G(E) = ~ [fex(E,E')+ 2f;(E,E')]F(E')dE'. 

From (17), (21), and (23) it follows that this 
integral differs from zero only when E :S E 0 

« Eex· 
Let us find the solution of (22) in the region 

E < E ex· In this region rex ( E) = r i ( E) = 0. 
We shall first make a rough comparison of the 
first and last terms in the right side of (22). The 
order of magnitude of their ratio is 

y(E)F(E) I !__D(E)E'f,!__ F(E) ~ y£2 • 
, aE aE E''• D 

Under the conditions ofl 1•2J, this ratio is much 
smaller than unity 3 >. Consequently, the solution 

3)The quantity yE 2/D has a simple physical meaning: it 
is the ratio of the time necessary to accelerate the electron to 
an energy E to the time within which the electron leaves the 
region of strong electric field as a result of diffusion. 
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can be represented by a series in powers of y: 

F(E) = Fo(E) + F1(E) + ... , 
where 

Fo(E) = O(v0), F1(E) = O(v) 

etc. A solution of (22) in the region E < Eex• 
accurate to terms of first order in y and satis
fying condition (19), is of the form 

E Ei 

F(E)=AE'i•[1+ ~ dE1 ,1 ~ v(Ez)E2'f,dE2] 
0 D(E1)E1' 0 

E Et E 

- E'l [ I dEl \ G (E ) dE + \ dEl 
' J D(E )ET. J 2 2 J D(E )E 'f, 

0 II 0 0 11 
Ei Ez Ea 

X ~ v(E2)E2'izdE2 ~ D(:~~ ,1, ~ G(E4)dE4 J, (24) 
0 0 . 3 3 0 

where A-arbitrary constant. 
Let us investigate now the equation (21) with 

E > Eex· As indicated above, in this region 
G ( E ) = 0. In addition, it is easy to verify that 
fex(E) »y(E) when E>Eex (see[ 1•2J). Con
sequently, when E > Eex the function F (E) satis
fies the equation 

a a F(E) 
aED(E)£11'aE E•J, -[fex(E)+f;(E)]F(E)=O. (25) 

Let us integrate this equation over the energies 
from Eex to 00 • As a result we obtain 

F'(Eex)- Fi:::) =- [f(!ex) S[fex(E) + f;(E)]F(E)dE. 
Eex (26) 

On the other hand, it follows from (24) that 
Eex 

F'(Eex)- F(Eex) =_A_~ v(E)"'/EdE 
2Eex D (Eex) 0 

Eex Eex Ei 

- D(!ex) ~ G(E)dE- D(;e,) ~ v(E1)dE1 ~ D(;~2E2, 1, 

(27) 

Noting that, in accordance with the foregoing, 

Eex 

~ G(E)dE = r G(E)dE = f [fex(E)+f;(E)]F(E)dE, 
0 

and comparing (26) with (2 7), we determine the 
constant A: 

Eex 

A= r ~ v(E)E'IzdE r1 
[ r f;(E)F(E)dE 

0 Ei 

By finding the constant A we have completely 
determined the solution in the region E < Eex· 
We shall need in what follows the value of the 
function F (E) at the point E = Eex· Accurate 
to terms of first order in y we have 

X [ r G(E3)dEa- ~ G(E3)dE3]}. 

o E 2 

The second integral in the square brackets differs 
from zero only when E 2 :S E 0 « Eex· Therefore, 
if we neglect terms of order E0/Eex• then this 
relation takes the form 

Eex 

F(Eex) = Eex'l{ ~ v(E)E'IzdE r1 

0 

00 00 

X { ~ f;(E)F(E)dE- ~ [fex(E) 
0 0 

For further calculations we shall need the 
function F ( E ) only in the region of energies 
which do not exceed greatly the ionization energy, 
namely in the region where r i (E) « rex (E). 
We therefore neglect the term with ri (E) in (25). 
In the section from Eex to Ei the function 
rex (E) can be approximated, accurate to 
20-30%, by the linear function (see Fig. 1) 

fex(E) = fex'(E- Eex), 

where r~x does not depend on the energy. 
Thus, when E > Eex Eq. (25) takes the form 

a a F(E) 
fJED(E)E'J, fJE~- fex'(E- Eex)F(E) = 0. (29) 

So long as the inequality E - E 0 « Eex is satis
fied, we can assume near the point E = Eex that 
D (E) = D ( Eex) and E 1/ 2 = E~~. and (29) simpli
fies to 

a2F(E) I 

D(Eex) ~- fex (E- Eex)F(E) = 0. (30) 

We introduce the notation 

[D(Eex) I r.x']''• =Eo. 
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FIG. L Approximation of the excitation and polarization 
cross sections: a- for helium, b- for argon. Solid lines _ex
perimental results of [']. Dashed lines -lines used for ap
proximation. 

E 0 is the characteristic scale over which an ap
preciable change takes place in the function F ( E) 
when E > Eex· Using relation ( 11), we write 

Eo=[!!_- 2e2ft 2EexGtr(Eex) (2E/m)'f,J'I• 
rex' 3mro2 i . • 

This quantity does not depend on the gas density 
(since r ~x is proportional to N). The theory 
developed above is based on the inequality 

Eo< E;- Eex-

Using the definition of E 0 given above, we can 
write down this inequality for argon and helium 
in the form 

& ~ 4 · 10-9 w, VI em 

( w is measured in sec- 1). As applied to the ex
perimental conditions of 11, 2], it yields 

ft < 107 VI em, 

which is realized in practically the entire experi
mentally investigated region of electric field inten
sities. 

We note that in experiments on radio-frequency 
breakdown of noble gases (see [ 3]), the situation 
is reversed: 

Eo> E;- Eex 

(which is equivalent to & > 4 x 10-9 w in V /em). 
The theory proposed here can therefore not be 
applied to experiments on radio frequency break
down. 

A solution of (30), finite when E - Eex » E 0, 

is known to be ( see [ 6], p. 5 84 ) : 

F=F(Eex) f cos[uE-Eex+~]du/ f cos.!!!_du (31) 
0 Eo 3 0 3 

(the constant factor is chosen to make the function 
F (E) continuous at the point E = Eex). An asymp
totic expression for the function F (E) with 
E - Eex » E 0 is given by formula (23). The 
solution (31) is valid only in the region E - Eex 
« Eex· 

An asymptotic solution of (29) in the region 
E - Eex » Eo can be obtained without making any 
assumption that D (E) = const or E 1/ 2 = const. 
This solution is ([ 6J, page 196) 

y'~ [ f u3 J-1 [ fex' l'f, [ D(E) ]'I"' F(E)=-F(Eex) J cos-du -- --
2 0 3 D(Eex) fex(E) 

[ E~ [ fex(E) J'/z ] Xexp- --- dE 
E D(E) 

ex 

(32) 

(we have neglected terms of order E 0/Eex in the 
exponential and in the pre -exponential factor). In 
the region E0 « E - Eex « Eex this solution goes 
over into (31). 

If we substitute the function F (E) given by (31) 
and (32) in (28) and exclude F ( Eex) from the 
latter, we obtain a connection between the thresh
old electric field intensity and the neutral gas den
sity. Thus, the problem of determining the break
down limit has been solved in principle. 

Let us stop to evaluate the integrals in (28). 
To calculate the integral 

"" 
~ f; (E)F (E) dE, 
El 

we can make use of the asymptotic representation 
(32). Since the function F (E) decreases exponen
tially when E > Eex• the contribution to this inte
gral is made by an interval of width ~ E 0 (from 
Ei to Ei + E 0 ). In calculating the integral we can 
therefore expand the function in the exponential of 
(32) in powers of E - Ei, confining ourselves to 
the zeroth and first terms of the expansion, and 
the pre-exponential factor can be assumed con
stant. The function ri (E) is well approximated 
by the linear function ( Fig. 1): 

fi(E) = f;'(E- E;), 

where ri does not depend on the energy. As a 
result of integration we obtain 

"" [ u3 J-1 ~ f;(E)F(E)dE = F(Eex) .\ cos-3-du 
Ei 0 
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l'n [ r ' ]'"[ D(E·) ]·1. 
X 2f/ D(~ex) fex(~i) 

•• 
[- r (f.ex(E) ,.,,dE] 

X exp J D(E) . 
Eex 

(33) 

Accurate to within an exponentially small quan
tity, we have 

f [fex(E)+ 2fi(E)]F(E)dE =I fex(E)F(E)dE. 
Eex Ee:: 

The last integral can be calculated with the aid 
of (29): 

f D(Eex)F(Eex) 
J fex(E)F(E)dE = -D(Eex)F'(Eex)+ -·2E--

E ex ex 

Substituting here (31) we obtain (accurate to 
terms of order Eo/Eex> 

00 

~ fex(E)F(E)dE 
Eox 

D(Eex)F(Eex) f . U3 d /I u• d 
= J u sm- u J cos- u. 

Eo· 0 3 0 3 
(34) 

With the aid of (28), (33), and (34) we obtain the 
breakdown condition (neglecting terms of order 
Eo/Eex): 

·~ -
exp 1 [ f ex (E) ]''' dE = J'rt 3''• [ D (Ei) ]''• [ D (Eex) ]''• 
. J D(E) f(5/3) fex(Ei) fex' 

Eex 

Eex Eex 

X f '[D(E ) I (E )E 112dE I dEz ]-1 (35) 
i ex .) 'Y 1 1 1 J D (Ez) Ez1/2 

0 E, 

Using formulas (11) and (15), we can rewrite 
this relation in the form of a connection between 
the threshold electric field intensity and the neu
tral gas density: 

E; 

a = (3mw2 )'/, \ ( f1ex (E)- )''' dE, (3 7) 
2e2 J 'fiatr(E) 

Ecx 

b = l'n Z"l" 3,11, ro2 [ __::_ Eicrtr (E;) ]'1• 
f(5/3) aQ mw2 f1e:x(Ei) 

[ _::__ NEex'"l'Vmatr(Eex)]'lolfm f/ (E )E -'/, 
X 2 f' V 2 N f1tr ex ex , mw ex 

(we emphasize once more that the quantities 
r ~x/N and r ~/N in (3 8) do not depend on the 
density N). 

(38) 

It must be noted that the approximation of 
rex (E) by means of a linear function is not used 
when calculating the constant a, since the asymp
totic representation (32) is valid regardless of the 
concrete type of the function rex (E). The con
stant b also depends weakly on this approximation, 
b = ( r ~x > 1/ 6. 

4. COMPARISON WITH EXPERIMENT 

Let us ascertain first the limits of the theory. 
The region of its applicability is bounded on the 
side of strong electric fields by the inequality 

[8 ~ 107V I em. 

On the high-pressure side, the region is bounded 
by inequalities (13) and (20). Simple calculations 
show that under the conditions of Minck's experi
ments [t] ( r 0 = 6 x 10-4 em, T = 25 x 10-9 sec), the 
more stringent of these two inequalities is (13), 
which yields 

N ~ 1021 cm-3 • 

Under the conditions of the experiments of 
Mayerand and Haught[ 2J ( r 0 = 10-2 em, T = 30 
x 10-9 sec), the inequality (19) is more stringent. 
For helium it yields 

N~3. 102° cm-3, 

10 7 
- ,cmjy e 

a 

l 
'I -

J 

2 . y··· , I . . 
2 

2 If 5 8 
LnlNzt t7/6. to·SBJ 

FIG. 2. Comparison of theory with the experiments of [1 ] 

and [2]: a- for helium, b- for argon. The straight lines were 
drawn by the least squares method, and the only points included 
iri the calculation were those lying within the limits of appli
cability of the theory (the applicability limits are denoted by 
the dashed lines). 
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Experiment I Gas I atheor ·10-' 

PI 
I { Ar 

I 
1.6 

He 1.0 
[9] He 1.0 

and for argon 

(39) 

We shall not consider below the experimental 
results obtained for values of the parameters f£ 
and M which do not satisfy the conditions of appli
cability of the theory. In particular, we exclude 
from the comparison with theory all the results of 
[ 2J on the breakdown of argon, since they were 
obtained at pressures for which condition (39) is 
not satisfied. 

To verify the correctness of (36), we plotted 
1/ f£ against ln N2 f£ 1716 ( Fig. 2). In accordance 
with the predictions of the theory, these relations 
are close to linear. With the aid of Fig. 2, we can 
obtain the experimental values of the constants 4> 

a and b. The theoretical values of these con
stants are calculated from formulas (36) and (37). 
Results of comparison of the theory with experi
ment are listed in the table (a and b are meas
ured respectively in units of V /em and 
cm6 (VI cm-17/6). 

To calculate the constant a we use the cross 
sections given in Brown's booki 3J. Exact cal
culation of the constant b by means of formula 
(37) is difficult, because we do not know the 
parameter a, which depends on the distribution 
of the electric field at the focus. We therefore 
made only a crude estimate of the constant b 

4)The experimental results o£.['• 2 ] were given only in 
graphic form. The use of these results to plot 1/S against 
ln N2 817/ 6 and to calculate the constants a and b possibly 
causes an error of 10-15%. 
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aexp ·10-' I btheor ·1 0-"1 bexp ·10-•• 

1.5 

I 
-3 I 3.0 

0,9 -to-• 9·10-3 
0,9 -3 2,2 

under the assumption that a ~ 1 and Q ~ 1. 
The good agreement between the experiments 

and a theory based on classical mechanics indi
cates that quantum effects do not play a noticeable 
role in optical breakdown of noble gases (in direct 
opposition to the opinions expressed in [ 2] ) . The 
quantum effects become significant only in inves
tigations of a gas with a low ionization potential, 
or when the frequency of the optical radiation is 
increased. 

This work was done at the initiative of A. A. 
Vedenov. The author thanks him sincerely for 
much advice and discussion. The author is in
debted to Academician M. A. Leontovich and V. I. 
Kogan for valuable remarks concerning the char
acter of the exposition. 
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