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The high-frequency properties of ferromagnetic metals in a strong magnetic field ( R « l, R 
is the Larmor orbit radius and l is the mean free path) are investigated in the anomalous 
skin effect region ( kR » 1, k = 2rr /A., A. is the electromagnetic wavelength). It is shown that 
weakly damped coupled spin and electromagnetic waves may exist in the metal near the fer­
romagnetic resonance and anti resonance frequencies and the cyclotron resonance frequency. 
It is found that the ferromagnetic resonance frequency shifts and the shape of the resonance 
curve changes if spatial dispersion of the magnetic permeability is taken into account. The 
possibility of the cyclotron frequency or of any of its harmonics being equal to the ferroresonance 
or antiresonance frequencies is considered. Equality of the frequencies should significantly 
change the spectrum of the weakly damped waves. The existence of weakly damped waves 
causes the impedance to have a peculiar frequency dependence, which has been calculated 
for a stationary magnetic field parallel to the surface of the metal. 

1. INTRODUCTION 

As is well known, the high-frequency properties 
of ferrodielectrics are not very sensitive to ex­
change effects (see, for example, [ t]). In metals, 
if the effective permeability is large and the ani­
sotropy energy is small, the "exchange" term in 
the Landau-Lifshitz equation can become compar­
able with or even larger than the "Zeeman" term, 
owing to the strong inhomogeneity of the magnetic 
field in the skin layer. The exchange interaction 
leads to a shift of the resonant frequency and to 
additional broadening of the resonant line. These 
effects were observed by Rado and Weertman in 
permalloy with vanishingly small anisotropy[ 2,3J. 
Ferromagnetic resonance under such conditions 
was called by them spin-wave resonance. The 
study of spin-wave resonance is of interest in 
connection with the possibility of determining the 
exchange constant a from experimental data. We 
note that the exchange effects are significant also 
for thin films, in which resonance with standing 
spin waves was observed[ 4•5J. 

The macroscopic theory of spin-wave resonance 
in a magnetic field parallel to the surface of the 

1>some of the results of this were obtained by one of the 
authors (Yu Lu) during his stay at the Khar'kov University 
(1961). 

metal was developed by Ament and Rado[s] under 
the assumption that the skin effect has a normal 
character. A study[ 7J of spin-wave resonance 
under normal skin effect and general boundary 
conditions has made it possible to obtain agree­
ment with experiment[3]. Spin-wave resonance at 
low temperatures, when the skin effect becomes 
essentially anomalous, was investigated by V. 
Gurevich[S] in magnetic fields perpendicular and 
parallel to the surface of the metal. 

No account was taken in the above-mentioned 
investigations of the influence of the magnetic 
field on the electric conductivity; this neglect is 
justified if the radius of the electron orbit R is 
large compared with the effective mean free path 
l ( R » l). However, this condition may not be 
satisfied at helium temperatures. 

In this paper we investigate the high-frequency 
properties of a ferromagnetic metal with anomalous 
skin effect in a strong magnetic field, when the 
opposite inequality holds true 

R~l. ( 1) 

Closely linked with the evaluation of the influence 
of the magnetic field on the electric conductivity 
of the metal is the possible propagation of weakly 
damped waves. As shown by many authors[S-tt], 
if condition (1) is fulfilled weakly damped waves 
(helical and magnetohydrodynamical) can propa-
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gate in the metal and make it transparent in the 
corresponding frequency region, as well as cause 
other resonance effects. Weakly damped electro­
magnetic waves in a nonferromagnetic metal were 
investigated in the region of the anomalous skin 
effect by Kaner and Skobov[ 12]. 

In ferromagnetic conductors, the weakly damped 
electromagnetic waves are strongly linked with 
oscillations of the magnetic moment. The propa­
gation of such coupled waves was considered by 
Stern and Callen [ 13 ] and by one of the authors C 14 ] 

for the normal skin effect, when the role of the 
exchange is insignificant. 

As will be shown below, spatial dispersion of 
the magnetic permeability and of the electric re­
sistivity can give rise to weakly damped coupled 
spin and electromagnetic waves. The existence of 
weakly damped waves determines the unique de­
pendence of the surface impedance of ferromag­
netic metals on the frequency and on the mag­
netic field 

2. WEAKLY DAMPED WAVES 

Let us consider an unbounded ferromagnetic 
metal, in which the propagation of a plane mono­
chromatic wave of frequency w obeys the Maxwell 
equations 

roth = 4n:j I c, 

j; = a;kek, 

rote = i wb I c; 

b; = 1-likhk, 

(2)* 

(3) 

where <Tik and ~ik are the electric conductivity 
and magnetic permeability tensors, respectively. 

We consider in what follows the propagation of 
a wave transverse to a constant field H ( k 1 H). 
We direct the x axis along H and the z axis 
along k. In this system of coordinates, the mag­
netic permeability tensor can be written in the 
form 

!lik = ( ~ ~1 i~2 ) , 
0 -!fl2 fll 

QQ1- (w- iA-) 2 4nvMo(w + iA.) 
Ill Q2-(w-i:?-:)2-, !12 Q2-((t)-iA.)2" 

Here 

Q = yll + a!.-2, Ql = Q + 4nvMo, Mo 

M0-saturation magnetic moment, 1' = ge/2mc 

(4) 

( g-spectroscopic factor), m-mass of free elec­
tron, a = ®c a 2/n -exchange-interaction constant 
(®c-Curie temperature, a-lattice constant), 
A-Bloch relaxation constant. 

*rot =curl. 

The electric conductivity tensor in a strong 
magnetic field, in the case of the anomalous skin 
effect 

kR ';> 1 

was calculated by Kaner and Skobov [ 12]. For an 
isotropic electron energy spectrum this tensor 
takes the form 

3niNe2 n(ffi + iv) 
Uxx = Uyy = -4 • k ctg , 

m v ffic 

(5) 

3Ne2(v-iffi) [1 n(ffi + iv) c _n-=-((t)_+_i-'v)'-], (6)* 
IJzz = *k2 2 - 2k tg m v · v ffic 

where N-concentration, v-electron velocity on 
the Fermi boundary, v-effective collision fre­
quency, we = eB/m*c-cyclotron frequency, B = H 
+ 41TM0-magnetic induction, and m* -effective 
mass of the electron. 21 

The off-diagonal components of the tensor <rik 
are negligibly small in the approximation where 
kR » 1 [ 12]. Since the tensor <Tik is diagonal, the 
dispersion equations for the extraordinary and 
ordinary waves separate: 

2 4niffi 
k = --2-ayy(w, k), . c 

k2 _ 4niw det llik ( k) 
- c2 !lzz IJxx w, . 

(7) 

(8) 

The extraordinary wave (7), in which the mag­
netic field is parallel to the constant field H, does 
not interact with the oscillations of the magnetic 
moment. In the ordinary wave (8), the field com­
ponents ey and ez vanish. 

Using (4) and (6), and neglecting dissipation, we 
represent (8) in the form 

wo2 ffia2 + a.w2k2- w2 w (9) 
k3= ---w nctgn--, 

c2v w,.2 + a.w1k2- w2 We 

where w5 = 37rNe 2/m is of the order of the square 
of the plasma frequency, and 

Wa = vB, Wr = v (liB)''', (1)1 = v (II + B)' (J)2 = 2yB. 

Estimates show that the "exchange" compo­
nents are significant only in the direct vicinity of 
the resonance wr and antiresonance wa, and can 
be neglected in a qualitative investigation of the 

*ctg = cot. 
2 )We have assumed that the magnetic field acting on the 

conduction electron is B = H -t- 4rrM 0 • This, of course, is valid, 
since, first, the anomalous Hall effect is very small at low 
temperatures [16 ] and, second, the investigations of the de 
Haas-van Alphen effect in ferromagnetic metals confirm this 
point of view [17]. 
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spectrum (9). The spectrum depends here essen­
tially on the relation between the quantities wr, 
wa, and we· The spectral relationship for several 
cases in which the frequencies wr, wa, and we 
are quantities of the same order is shown schema­
tically in Fig. 1. As is clear from the figure, 
weakly damped waves can exist near the ferro­
magnetic resonance frequencies "'-'r• antiresonance 
frequencies wa, and also near the cyclotron fre­
quency we· The latter case was considered by 
Kaner and Skobov[ 12 ] for ordinary metal. 

1-+-'lr--1--+--.f:----f-:; ... fi w 
1211 l we 

I 
I 
I 

FIG. 1 

Investigating the waves near the characteristic 
frequencies u.,r and wa, we assume, only for the 
purpose of simplifying the notation, that the latter 
are small compared with the cyclotron frequency. 

Near the frequency wr, the wave vector in 
formula (9) becomes infinite, corresponding to 
spin-wave resonance. This gives rise to excita­
tion of spin waves with a known dispersion lawi!J 

( 10) 

When the "detuning" of the resonance is large 
compared with the exchange term: 

I Wr - w I ~ awzk2 / 2w,., 

the spectrum of the weakly damped wave takes 
the form (assuming that w « We) 

1 Wo2 Wa2 - Wr2 ( 11) 
w = Ulr + 3f c2 R w,k3 

The condition for its existence is 

woz w 2 _ w 2 
k5<-- a r. 

c2R UW?. 

Expressing k as a function of w by means of (11), 
we can easily see that the inequality (5) is auto­
matically satisfied in this case. As can be seen 
from (1.1), this wave has anomalous dispersion. 
Its phase velocity is determined by the expression 

- ( Rc~ \'/e ( w2- w,.z )'" 
Vph-- Ulr 2 / 2 2 ' ( 12) 

ffio 1 ,wa - (J)r 

and the group velocity is 

( 13) 

Near the antiresonance frequency at I w - Wa I 
» ak2, there exists a wave with a dispersion law 

(14) 

Inasmuch as the inequality kR » 1 is violated 
at the antiresonance point itself, the condition of 
nearness to this point is 

Wa- w ~ 2nyMo(Oo / R)2, (15) 

where o 0 = c/ w0 -depth of penetration of the field 
in the metal. 

The condition for the existence of the wave (14), 
which consists in neglecting the exchange effect 
near the frequency wa, leads to the following in­
equality, which is obviously satisfied, 

This wave also has anomalous dispersion. Its 
phase and group velocities are 

Finally, near cyclotron frequency, when 

(16) 

( 17) 

( 18) 

v « nwc - w « we, the expression for the spec­
trum of the wave takes, in analogy with that given 
inL 12J, the form 

In connection with formula (19), we note the 
possibility that the cyclotron frequency, or an 
exact multiple of this frequency, may coincide 
with the ferromagnetic resonance frequency at 
certain values of the field Her• defined by the 
relation 

(19) 
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4:n:Mo 
H =-· 

cr (gm*/2m) 2n-2 -1 
(20) 

As can be seen from (20), for the frequencies 
to coincide it is necessary to satisfy the condition 

2m< gm*. (21) 

In this case the spectrum of the weakly damped 
wave is written in the form 

(22) 

3. REFLECTION OF ELECTROMAGNETIC WAVE 
FROM A HALF-SPACE 

Let us consider a semi-infinite metal (z > 0). 
Assume again that the x axis is directed along 
the constant magnetic field H and the wave propa­
gates perpendicular to the surface of the metal. 
The initial system of equations consists of the 
Maxwell equations: 

4:n:. dhy 
--;:- !x = - clz--' 

iw dex 
-by=---

c dz ' 

where by = hy + 47Tmy, and my must be deter­
mined from the linearized equation of motion 

(23) 

and magnetic fields into the region z < 0. This 
can be done in two ways: either by assuming that 
ex ( z ) is an even function and ay ( z ) is odd, or 
vice versa. If we neglect the spatial dispersion of 
the magnetic susceptibility, then the expressions 
obtained in this case for the impedance, as ex­
pected, differ by an inessential factor. 3l 

For the general boundary condition for the 
magnetic moment, neither an even nor an odd 
continuation of the magnetic field allows direct 
use of the expression for the magnetic suscep­
tibility of an unbounded metal. However, if the 
alternating part of the magnetic moment vanishes 
on the boundary, then, an odd continuation of the 
magnetic field easily yields from (24) the second 
relation of (3). If Bm/Bz vanishes on the boun­
dary, this relation is obtained with an even con­
tinuation of the field hy. 

In the former case the electric field ex ( z) is 
continued in even fashion. We denote the imped­
ance in this case by ZP. From (23), (25), and (3) 
we readily obtain 

Zp ___ 2 r fl(W, x) dx 
J (m = 0 for z = 0). (26) 

i:n: 0 x2 - e(w, xht(w, x) 

am [ a2m ] (24)* Here - = '\' m + a-, H + '\' [M0, h]- A.m, at az2 
e{w, x) = 4:n:iw-1cr(w, x) 

to which we must add the boundary conditions. 
The current density h is determined from the 
conduction-electron distribution function, which is 
a solution of the kinetic equation with correspond­
ing boundary conditions. 

However, the calculation of the impedance can 
be greatly simplified by using for the connection 
between the current and the electric field a rela­
tion that holds true in unbounded space: 

ix(k) = a(w, k)ex(k), (25) 

where j ( k) and e ( k) -Fourier components of the 
current and field, respectively and a( w, k) 
= Uxx( w, k) is given by (6). Such a substitution, 
as shown by Azbel' and Kaner[ 15J, leads to the ap­
pearance in the impedance of an inessential real 
factor of the order of unity. The insensitivity to 
the boundary conditions is manifest, in particular, 
in the fact that the impedance in the case of anom­
alous skin effect (for H = 0) differs from the im­
pedance in the case of specular and diffuse reflec­
tion of electrons from the boundary of the metal 
only by a factor% (see [ 18 •19]). 

To calculate the impedance with the aid of 
(23) -(25) it is necessary to continue the electric 

is the dielectric constant of the metal and x = ck/w 
the refractive index of the wave with wave vector 
k. 

In the second case ( Z = Zn) we have 

1 - 2 r 8 ( W, X) dx 
Zn- =in·~ x2 - e(w, x)1-1(w, x) ( :: = 0 for z = 0). 

(27) 

Formulas (26) and (27) have a very broad 
range of applicability. They can be used, 
naturally, to calculate the surface impedance of 
a ferromagnetic dielectric without spatial disper­
sion of the dielectric constant [ E ( w, x) = E. ( w)]. 
When account is taken of the spatial dispersion of 
the dielectric constant, it should be noted that (26) 
is valid if aP I az = 0 on the boundary of the sample, 
and (27) is valid if P = 0 when z = 0 ( P-dielectric 
polarization vector). If the spatial dispersion is 
not significant [ E ( w, x) = E ( w), iJ. ( w, x) = iJ. ( w)], 
when we see readily that 

(28) 

3 )An even continuation of the field e corresponds to the 
very special boundary condition a.p I az = o when z = 0, while 
the odd corresponds to .p = 0 when z = 0 (for the definition of 
the function .p see [15]). 
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Under the assumption used here, namely that 
the skin effect has an ultra-anomalous character, 
the dielectric constant is determined, as already 
mentioned, by the specific electric conductivity 
[see (6) ]. The impedance (26), (27) can then be 
calculated for several limiting cases, to which we 
now proceed. 

Away from the cyclotron frequency, (we assume 
for simplicity that v « We), we represent 
E ( w, x) in the form 

'V :n: 
tg<p = ~· 0<<p<2. (29)* 

Neglecting the exchange effect, the magnetic 
permeability has, accurate to terms of order A. 2, 

the form 

fl.= (wa2- w2) ~l- w2) + 2i/..w"(Wa2 - Wr2) . (30) 
( Wr2- w2) 2 + 4f..2w-

Inasmuch as Im 11- > 0 (A.> 0, wa > w), expression 
(30) can be written in the form 

A 2/..ro ( roa2 - OOr2) 
!l = I fl. I eHt, tg u = -:------c::---""'--::7--:---::--~:­

( Wa2 - ro2) ( 00r2 - ro2) 
(O<'I't<:n:). 

(31) 

With the aid of (29) and (30), using (26), we 
obtain, far from cyclotron frequency, 

the line width, as shown by calculations, but does 
cause a sh.ift in the resonance frequency. The 
shifted resonance frequency is 

,_ 5[8 roo4 (4:n:yMo) 2roa2 3 a]''• 
OOr - OOr + 4 27 c4R2 Wr5 a Wt • 

(33) 

In the vicinity of the shifted resonance frequency 
w~. allowance for the spatial dispersion leads to 
an appreciable change in the form of the resonance 
curve. An investigation of the question of the influ­
ence of the spatial dispersion of the magnetic sus­
ceptibility on the form of the resonance curve will 
be the subject of a separate communication. 

The real part of the impedance differs from 
zero also near the frequency of cyclotron reso­
nance, owing to the possible propagation of weakly 
damped waves (19). When we- w » v we have 

Zp = 2_ nw_:__[ (nwc) 2- Wu~ ]''' ( c2R nwc_- w )''• (34) 
3"}'3 C (nwc) 2- Wr2 Wo2 We 

(in deriving (34) we have assumed for concrete­
ness that wa, Wr <we). 

Calculation shows that in the cases in question 
the values of the impedance Zn differ from Zp 

(32) only by a numerical factor, this being an obvious 
consequence of the insensitivity of the impedance 
to the boundary conditions for a magnetic moment 
in the case of the anomalous skin effect. 

Neglecting dissipation the impedance (32) be­
comes imaginary which corresponds to total reflec­
tion of the wave. Near the characteristic frequen­
cies wr and wain the region of the existence of 
weakly damped waves (11) and (14) the impedance 
becomes complex [as is readily seen from (31), 
in the region of weakly damped waves J. = rr and cp 
can be set equal to zero]. At the same time the 
phase in (32) becomes equal to rr /6. 

The frequency dependence of the real ( Rp) 
and imaginary ( Xp) parts of the impedance (32), 
without account of dissipation, is shown schematic­
ally in Fig. 2. An account of dissipation changes 
the resonance curve in the usual fashion. The 
spatial dispersion of the magnetic susceptibility, 
the role of which becomes appreciable near the 
frequency wr, does not make any contribution to 

*tg =tan. 

4. CALCULATION OF THE IMPEDANCE FOR AN 
ARBITRARY LAW OF CONDUCTION­
ELECTRON DISPERSION 

At the end of Sec. 2 we pointed to the possible 
coin¢idence of the ferromagnetic resonance fre­
quency wr and the cyclotron frequency we. To 
observe this effect when the carrier energy spec­
trum is isotropic it is necessary to change simul­
taneously both the frequency of the electromagnetic 
wave and the magnitude of the applied field H. 
When the energy spectrum is anisotropic, the 
possibility of realizing this effect is more favor­
able for then the electron cyclotron frequency, as 
is well known, depends on the orientation of the 
constant field relative to the crystallographic 
axes. At certain directions of the field in a plane 
parallel to the surface of the metal, the cyclotron 
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frequency may equal the ferromagnetic resonance 
frequency wr. Then, as expected, a sharp change 
takes place in the shape of the resonance curve. 

The electric conductivity tensor of the metal, 
for kR » 1 and for arbitrary electron dispersion, 
was calculated by Kaner and Skobov[ 12]: 

8 2 2 00 d a(w k) = e WemVx I Px 
' · h3 jvy'jk Lv-i(w-n<oc-nwc''px2/2) '(35) 

where all the quantities that depend on Px are 
taken at the point Px = 0, v.Y = avy /oT' T-dimen­
sionless time of revolution of the electrons on the 
trajectory, w~ = o2wc /op~ lpx=O· Expression (35) 

was obtained for an unbounded metal under the 
assumption that the cyclotron resonance takes 
place on the central section Px = 0. 

Putting D.= ( w - nwc)/wc and ~ = v/wc, we 
easily obtain 

a(w, k) = ~;ej2:Y~~2 ( n;~~ )"' k ~= j ' (36) 

where the dimensionless parameter u is connected 
with ~ and ~ in the following fashion: 

u = f3 + is ; 213, 

and the phase ljJ takes the form 

tg'IJl=s/(<'l+l'<'l2 +s2), O<'IJl<n/2. (37) 

Using (36), (37), and (31) we obtain for the sur­
face impedance (26) 

Zp = C (nwe) '/a jill '1•1 u j'lsei(1Jl+2-fr-n)/a, 

c = 1_ [ 2h3
1 vy' 1 ( !_ nwc'' rr . 

3l'3 nce2mvx2 2 We 

(38) 

Assume for concreteness that D. > 0. Setting 
v and 11. in (35) equal to zero, we write Zp in the 
form 

I w 2 -w2 !'/,( w-nw )'I• Zp = C(nwe)'la _ __"___ _ __ e e-in/3. 
Wr2 - W2 We 

(39) 

Formula (39) is somewhat arbitrary. The fre­
quency w in the numerator or in its denominator 
should be set equal to nwc, depending on which of 
the frequencies, wr or wa respectively, is equal 
to the cyclotron frequency.As seen from (39), when 
nwc coincides with wr or wa, greatly differing 
values of the impedance are obtained. Allowance 

for dissipation leads in the usual fashion to a 
finite line width. 

The authors are grateful to E. A. Kaner for a 
useful discussion of many problems touched upon 
in the present article. 
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