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We consider the interaction of electrons in a metal, arising both from exchange of virtual 
phonons and from longitudinal electromagnetic waves (Coulomb interaction), taking into ac­
count the influence of Coulomb effects on the phonon spectrum. We find a criterion for 
superconductivity which for an isotropic model is of the form ps 2 < %Nmv}, where p is the 
density of the metal, s the speed of longitudinal sound, N the electron concentration, m the 
electron mass, and vF the Fermi velocity. This criterion is compared with the experimen­
tal data. 

AccORDING to contemporary theory, the reason 
for the absence of superconductivity in a number 
of metals is that the Coulomb repulsion exceeds in 
absolute magnitude the attraction between the elec­
trons due to exchange of virtual phonons. The 
question of the criterion for superconductivity to 
occur has been the subject of a number of 
papers ( [ 1- 4], et al); however, in these papers the 
Coulomb effects are taken into account by intro­
ducing an effective interaction due to them. But the 
Coulomb interaction does not simply lead to an 
inter-electronic repulsion; when lattice vibrations 
occur, Coulomb effects also induce an almost total 
mutual cancellation of the electronic and lattice 
charges, thus causing a change (renormalization) 
of the phonon frequencies. Consequently, it is cer­
tainly not valid to treat the interaction between the 
electrons as the sum of two additive terms (phonon 
and Coulomb terms respectively). The actual re­
sultant interaction has a very complex form, with a 
sign depending on the relation between the param­
eters of the lattice and of the electron gas. Accord­
ing to the ideas of Cooper, superconductivity can 
occur when the sign of this interaction is negative, 
indicating an attraction; electronic bound states 
then appear on the Fermi surface. The criterion 
for superconductivity obtained in this way-that is, 
that there should be an attraction between the elec­
trons-is evidently in qualitative agreement with 
the experimental data ( cf. Sec. 5). 

1. A characteristic property of the lattice vibra­
tions of a metallic crystal is that the adiabatic ap­
proximation cannot be applied to them. This fact 
has an important bearing on the nature of the inter­
action of the electrons with the lattice vibrations, 
which is responsible for superconductivity. 

Suppose that an electron moves in the unde­
formed lattice in a periodic field V = V(r) (Fig. a). 

a 

Then when the lattice is deformed in a way charac­
terized by the deformation vector u(r, t), it will 
move in the potential field indicated schematically 
in Fig. b, which we can write as V' = V(r- u) + ecp; 
here V(r - u) is a locally periodic function and cp 
is a slowly varying potential (we have assumed that 
the characteristic "wavelength" A. of the deforma­
tion is large compared to the lattice constant a). 
The quantity E =- '\lcp describes the macroscopic 
field due to an inhomogeneous (or nonstationary) 
deformation of the lattice; its magnitude is propor­
tional to the deformation tensor. As shown by 
Akhiezer, Kaganov, and Lyubarskil [ 5] (cf. also[6, 7~ 
the existence of this field follows directly from 
Maxwell's equations. 

Thus the change V' - V of the potential energy 
of the electron in the field of the sound wave con­
sists of two terms: 

-uVV + eq:>. 

The first term describes the ''adiabatic'' interac­
tion of the electron with the lattice; by itself it 
leads to the usual Frohlich electron-phonon inter­
action Hamiltonian (cf. LBJ). The second term 
represents the "non-adiabatic" 1l part of the inter-

1)We use this term to denote effects connected with the in­
fluence on a given electron of the 'residual' electrons distant 
in space (in comparison with the lattice spacing). 
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action, which is not correctly treated by the 
Frohlich model. 

We shall preface what follows with a classical 
treatment of lattice vibrations in metals according 
to the method of Akhiezer, Kaganov, and Lyubar­
skil [fi]. Silin [ 6] and Kontorovich [ 7] have derived 
equations to describe the propagation of sound 
waves in a metal. In an isotropic model with a 
quadratic electron dispersion law these equations 
read, for longitudinal phonons propagating parallel 
to the x axis: 

pii ='Au" -NeE +A-a-\ xdtp; (1) 
ox • 

ax ax ( a ~) Bfo -~-+vx-"-+ eE---Au Vx--= 0, 
rJt ux ox 0£ 

X= f- /o; (2) 

Nu 1 + ~ x_dtp = 0 ( ou I - O'!__ 1 
zi = 8t- ' u - ax / . (3) 

Equation (1) above is the elasticity equation, 
which includes forces acting on the lattice due to 
the conduction electrons and to the electric field E 
which arises as a result of the lattice vibrations. 
(A is the longitudinal modulus of elasticity of the 
lattice, A is the constant describing the interaction 
of the electrons with the deformed lattice and N is 
the electron concentration); (2) is the kinetic equation 
(X is the deviation of the electron distribution from 
the equilibrium value f0(E)); and (3) is the equation 
describing mutual cancellation of the lattice charge 
Neu' and the electronic charge e jxdTp (dTp is an 
element of phase space). In (2) we have dropped 
the collision integral, which is valid for WT » 1 
(where T is the electronic relaxation time and w 
the frequency of the vibration); and in (3) we have 
dropped a term E' /41Te corresponding to a lack of 
compensation between electronic and lattice char­
ges. It can be shown that this term is small as a 
result of the smallness of the sound-wave frequen­
cies in comparison with the electronic plasma 
frequency w 0 ~ 1016 sec-1• In fact, an uncompen­
sated electron charge in a metal must be ''dissi­
pated" in a time of the order of the period of the 
plasma oscillations T 0 = 21T/w 0• In Sec. 6 we allow 
for the lack of total cancellation and give a more 
exact criterion for the applicability of Eq. (3) as it 
stands. 

Notice that the above equations imply the exis­
tence of a nonzero field E. For if we assume 
E = 0, solve the kinetic equation (2) and substitute 
the solution into (3), we can check that charge can­
cellation does not occur. But then it follows from 
Maxwell's equations that there must be strong 

fields present, and these in the final analysis lead 
back to just such a cancellation. Accordingly, we 
must treat the field E in a consistent manner; if 
we leave it out of account, Eqs. (1)-(3) are mu­
tually incompatible. Notice moreover that results 
corresponding to the Frohlich model (cf. infra) 
are obtained by just this step of setting E = 0 
[and neglecting (3)). 

2. Equations (1)-(3) can be considerably sim­
plified. In the kinetic equation (2) the first term 
a x.!a t ~ wx is small compared to the second term 
vxa x/a x ~ VFkx (where k is the wave vector of 
the sound wave). Neglecting this term, dividing (2) 
by Vx and integrating over dTp and dx, we get 

1] + (e<p + Au')3N / mvF2 = 0, (4) 

where Tl = JxdT P is the charge of electron concen­
tration induced by the lattice vibrations. (The inte­
gration constant from the dx-integration has been 
included in the definition of the potential qJ.) 

Similarly, (1) and (3) can be rewritten in the 
form: 

pii = 'Au"+ Ne<p1 + A1]1 , 

Nu1 + 1J = 0. 

(5) 

(6) 

Equations (4)-(6) form a system of three equations 
for the three variables u, Tl, qJ. Solution of these 
equations gives us the dispersion law of the vibra­
tions, the amplitude of the electric field E and the 
electron density fluctuation T/. However, we shall 
subsequently be interested in the Green functions 
rather than the actual solutions of the equations; 
for this reason it is more convenient for our pur­
poses to obtain (4)-(6) from a Lagrangian formal­
ism. We can easily verify that (4)-(6) are the 
Lagrange equations for a Lagrangian 

~ f A(UI)2 PU2 I .. , I 
L = J drl--2-+-2--(Au + e<p)f] -Ne<pu 

( 7) 

(the last term in (7) comes from the expansion of 
the energy of the electron gas, %NEF, in a series 
in the deviation of the electron concentration from 
its equilibrium value N). 

3. We can now use well-developed methods to 
find the electron-electron interaction potential. 
We know that in quantum field theory the inter­
particle interaction is expressed in terms of the 
Green functions of the fields which propagate the 
interaction. Qualitatively speaking, the relevant 
fields in our case are: (1) the lattice elastic defor­
mation field u(x) representing an attraction be-
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tween the electrons; (2) the longitudinal electro­
magnetic field cp(x) representing the Coulomb re­
pulsion; (3) the field of the electron density fluctua­
tions 77 (x) which tends to screen the Coulomb inter­
action. Actually the presence of cross-terms 
representing interactions between u, cp and 77 
themselves makes such a decomposition purely 
formal. 

For a rigorous treatment we need the Green 
functions 

Dafl(X- X1 ) = -i(Tqa(x)qfl(X1 )), ( 8) 

where % = (u, 77, cp). The function representing the 
electron-electron interaction potential can be 
written 

:J) (x- X 1 ) = -i(T<D(x)<D(x1 ) ), (9) 

where <I>(x) = ecp(x) + A8u/8x is the energy of the 
electron in the sound-wave field. We see from (2) 
that the force acting on the electron is 

a I a<D 
eE----Au = ---. 

ax ax 

From (9) we have 2l 

a 
:J) (x- x 1 ) = e2Dcprp(x- X1 )+ eA--Durp(x- X1 ) 

ax 
a a2 

+eA ax' Drpu(x-x1 )+A2 axax1 Duu(x-x1 ). (10) 

To calculate the Green functions Det(3 (x - x') we set 
up the equations satisfied by them. Lagrange's 
equations give us 

apa(x) a ( aL ) aL 
-a-t -+a;- aqa1 (x) - aqa(x) = 0• (11) 

where Pet is the momentum canonically conjugate 
to the coordinate qet. Multiplying (11) by q(3(x'), 
applying the T -product operator to both sides of 
the equation and interchanging the order of the 
operations T and a /8 t, we find 

. a I • ( a ( aL ) ) -~-a (Tpa(x)qfl(x)>-~ T- qfl(X1 ) 

t ax aqu.1 (x) 

+ i < T a:~x) qfl(x1
)) =- i [pu.(x), qfl(x1 )] <'l(t- t1 ) 

= - llu.flll ( x - x1 ) , (12) 

since according to the general rules for quantiza­
tion the commutator [Pet, p (3) is to be taken as 
-i{pet, q(3} (we have set Planck's constant 1i equal 
to unity), where {Pet, q(3} are the classical Poisson 

2)To simplify the notation we have used x to denote both 
the totality of the space and time coordinates (r, t) and the 
Cartesian coordinate x; this should not lead to any ambiguity. 

brackets, equal to Oet(3 for any pair of canonical 
variables Pet, q(3. 

For the quadratic Langrangian (7), Eq. (12) 
leads to a closed system of equations, which can be 
solved exactly, for the double-time Green func­
tions (8). Actually, to find the Green functions in 
our case it is sufficient to multiply eqs. (4)-(6) by 
u(x'), 77 (x') and cp(x'), take the time-ordered expec­
tation value - i < T ... ) and add on the right-hand 
side the inhomogeneous term -Oa(3(x- x 1 ) which 
appears in (12). For instance, a typical equation is 

( ~ ~) a p--- '}..,-- Duu(x- X1 )-A--DTJu(x- X1 ) 
\ iJt2 iJx2 ax 

N a D I I - e Dx rpu(x-x)=-<'l(x-x). (13) 

Rather than writing down the other equations we 
proceed immediately to the solution. In Fourier­
transformed form we have: 

1 ik(A- 1/amVF2) 

-----; pw2-('A-2NA+ 1/aNmvF2 )k2 ; 
(15) 

1 Nk2 + (pw2 - 'Ak2) mvF2/3N 
Dcpcp(k, w) =- . · (16) 

e2 pw2 - ('A- 2NA + 1/a NmvF2 ) k2 

(we omit the other Green functions, which do not 
appear in (10)). 

Substituting the expressions (14)-(16) in (10), 
we find 

:J)(k,w)= mvi!__ pw2-(')..,-2NA)k2 
3N pw2-(')..,-2NA+ 1/ 3 NmvF2)k2" (17) 

Note that if we were to put cp = 0 in (4) and (5) and 
find the electron-electron interaction function, we 
should get 

A2k2 
:J)F(k, w) = (18) 

pw2 - ('A- 3N A 2/mvF2 ) k2 ' 

which corresponds to the results of the Frohlich 
model (cf., e.g., [S]; A.' =A.- 3NA2/mv~ is the re-

'normalized modulus of elasticity in the Frohlich 
model and as such is positive definite). On the 
other hand, if we were to put u = 0 in (4)-(6), i.e., 
neglect the lattice vibrations, 3l the electron-elec­
tron interaction would have the form 

2 4nNe2 
Wo =---, 

m 
(19) 

3 )In this case we must replace (6) by the equation ¢" + 
4rre1) = 0. (See below in Sec. 6.) 
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corresponding to the screened Coulomb potential 
of two charges. From (17)-(19) it is clear that it 
is quite illegitimate to write~ (k, w) as the sum 
of the two terms ~F (k, w) and ~c (k, w). 

4. To apply these results to the theory of super­
conductivity we find the interaction function~ (k, w) 

for k = 0. It is easy to verify that this is the quan­
tity which corresponds to the interaction between 
the electrons of equal and opposite momenta which 
go to make up Cooper pairs. 

From (17)-(19) we see that ;tJF(k) is every­
where negative (attractive), gj c (k) everywhere 
positive, while~ (k) is given by 

mvpl- f...- 2NA 
~(k)=~(k,O)= 3N f...-2NA+ 1/aNmvF2 ( 20) 

This expression is valid for long wavelengths 
(k- 0) (which is the region of validity of our whole 
approach); however, it seems plausible that the 
situation is much the same qualitatively even when 
we go to short wavelengths (large k). 

The quantity in the denominator of (20) is the 
renormalized modulus of elasticity of the metal, 
and as such is positive; the speed of sound, indeed, 
is given by the expression ( cf. also [to]) 

(21) 

Consequently, the sign of ~ (k) is determined by the 
sign of the numerator in (20). 

For 

2NA>f... (22) 

~ (k) is negative, indicating an attraction between 
the electrons; in this case superconductivity is 
possible at sufficiently low temperatures. Con­
versely, for 2NA <A. the metal cannot go super­
conducting however low the temperature, since then 
there is a repulsion between the electrons on the 
Fermi surface which inhibits the formation of bound 
states (Cooper pairs). 

Thus, the inequality (22) is the criterion for 
superconductivity in our model. We see therefore 
that superconductivity sets in at some given critical 
strength of the electron-phonon interaction A, 
whereas the normal Frohlich model leads to super­
conductivity for arbitrarily small A. 

Using (21) we can rewrite the condition (22) for 
superconductivity to occur as 

ps2 < 1/aNmvF2• (23) 

The criteria (22) and (23) are equivalent, but (23) 
is the more convenient since the condition for 
superconductivity is expressed in terms of ob­
servable parameters-the renormalized (true) 

speed of sound s, the electron concentration Nand 
so on. 

It is important to notice that the electronic 
charge e does not appear in the criterion for super­
conductivity (23), nor in formulae (20)-(22), in 
spite of the fact that it is electrical effects which 
are most important in the derivation of these 
formulae. Actually, expressions (20)-(23) are 
valid in the limit w 0 - oo, i.e., e- oo; in this limit 
e drops out of the final expressions (cf. Sec. 6). 

The inequality (23) means that the speed of 
sound in the metal s is less than the speed of sound 
in the electron system s 0 (p s5 = 1/ 3Nmvp. In this 
case the forces between electrons on the Fermi 
surface are attractive, leading to superconductivity. 
When s = s 0 the function ~ (k) goes to zero (for 
k - 0); in this case it is necessary to investigate 
its behaviour for shorter wavelengths, i.e., large 
k. Abrikosov ~ !1] has shown that in this region the 
interaction may be either attractive or repulsive, 
depending on the nature of the short-wave part of 
the phonon spectrum, so that in this case the metal 
may or may not be superconducting. 

5. One might think that the simple model used 
here to describe superconductivity is much too 
crude for us to expect a good fit with the experi­
mental data (we have assumed a quadratic electron 
dispersion law, used a Debye approximation for 
the phonons, neglected transverse phonons and the 
effects of anisotropy, etc.). However, it is reason­
able to assume that in cases where the condition 
(23) (or its opposite) is fulfilled by a large margin, 
it should constitute a correct criterion for distin­
guishing superconductors from normal metals. 
The numerical data tabulated below illustrate this 
assumption (we have confined our attention to the 
nontransition metals). 

In Table I we give the elastic moduli c 11 , c 12, 

and c 44 for most of the metals with cubic symmetry 
(Ag, Al, Au, Cu, K, Li, Na, Pb) 4). For an isotropic 
metal c 11 = ps 2• In the last column of Table I we 
have tabulated the values of the quantities 1/3Nmv~ 
calculated from the electron concentration in the 
metal (we have counted all the valence electrons 
as conduction electrons and taken their mass to be 

4 )Most of the data refer to room temperature or to T = 78°K. 
However, the change in the elastic constants as we go to low 
temperatures is insignificant for most metals. For example, 
for Ag and Au[12] the elastic constants increase as we go from 
T = 300°K to T = 4.2°K by approximately 10% (for the alkali 
metals, admittedly, the change may apparently be greater). At 
the same time the quantity 1/3 Nmv[ also increases some-
what when we go to low temperatures, as a result of the change 

in the lattice constant. 
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Table I 

Cu Cu I•J,Nmv~ 

!f 
n fcc 12,4 9.34 4.61 3.48 
s fcc 10.82 6.13 2;55 22.6 

Au n fcc 18.6 15.7 4.20 3;55 
Cu n fcc 16,8 12.1 7.54 6.38 
K n bee 0,457 0.374 0,263 o:32 
Li n bee 1.48 1.25 1.08 2.32 
Na n bee 0.945 0.779 0,618 0,83 
Pb s fcc 4.66 3,92 1.44 13.4 

*Superconducting or normal. 

that of a free electron) S). From this table we see 
that our criterion for superconductivity fits all the 
metals except Li, for which p s 2 and %Nmv~ have 
rather close values. We may notice, however, that 
the elastic properties of Li are strongly aniso­
tropic; an isotropic model would require 
c 11 = c 12 + 2cw whereas for Li c 12 + 2c44 = c = 3.41 
x 1011 dynes/em, i.e., more than twice c 11 • Notice 
incidentally that c itself is greater than %Nmv~, 
as it should be for a nonsuperconductor. 

In Table II we tabulate the analogous data for 
the hexagonal (Be, Cd, Mg, Zn) and tetragonal 
(13 -Sn, In) elements, also taken from the survey. [ 13] I 
Examination of the data listed shows that these 
metals also show a correlation with our criterion. 
In the cases where agreement with formula (23) is 
lacking, Cij and t;3Nmv~ are close in magnitude. 
In most cases, of the quantities 

c 11, csa, ( c12 + 2cu), ( c12 + 2caa), 

( Ct3 + 2cu), ( c13 + 2c66), 

which in an isotropic model should be equal (and 
equal to ps2), some are greater and some less than 
%Nmv~. It appears therefore that for these metals 
the effect of anisotropy, which was not considered 
above, is an important factor. 

6. In conclusion we obtain results that are inde­
pendent of the assumption of charge cancellation in 
the lattice vibrations. This will also allow us to 
trace the manner in which the electronic charge e 

enters the expression for the electron-electron 
interaction energy. 

Allowance for noncancellation of the charge af­
fects only Eq. (6), which now reads 

cp" + 4ne (Nu' + 'I'J) = 0. (24) 

The corresponding change in the Lagrangian (7) 
consists in the addition of a term 

r E2 1 r 
J 8n dr = 8n J (cp')2dr. 

The calculation is now entirely analogous to the one 
already given; the Green function~ (k, w) now be­
comes 

mvF2 [ NA2k,. J 
~ (k, co)= 3N 'Ak2- pco2- 2NAk2- mcoo2 

X [ ('Ak2- pco2) ( 1 + Vp
2k2

)- 2N Ak2 
3coo2 

Nmvp2k2 NA2k,. ]-1 

+ 3 - mcoo2 
(25) 

The poles of this function define the phonon ener­
gies w = Wk. We find 

We shall consider various limiting cases. 
A. If there are no electric interactions (e-O) 

we get expression (18) for the Frohlich-model 
Green function and the formula 

(27) 

for the elementary excitation dispersion law. Equa­
tion (27) describes the renormalization of the 
phonon frequencies in the Frohlich model. 

B. In the limit of strong electric interactions 
(e- oo) we get expression (17) for the Green func­
tions and (21) for the spectrum. The additional 
condition necessary for (1 7) to follow from (25) is 
that 

Table II 

Be 
n hcp 28.1 

Cd s hcp 11:o 
Mg n hcp 5;97 
Zn s hcp 16:1 
~-Sn s tetr. 7.35 
In s tetr. 4.45 

Hg s tetr. 3,60 

5)The quantities Cij and 1/3 Nmv£ listed in Table I 
(and also in Table II below) are expressed in units of 
1011 dynes/em. 

c01 1 1/ 3 Nmv~ 
30.2 15.5 -2.5 (15,3) 38,6 
4:69 1,56 4.04 3.83 (3,48) 7.64 
6.17 1.64 2,62 2:17 (1,67) 6.64 
6.10 3.83 3,42 5.01 (6,34) 13.5 
8,7 2.2 2.34 2.8 2.26 16.6 
4.44 0.65 3.95 4.05 1~22 10.4 
5.05 1.29 2,89 3.03 (0.35) 6.56 



ON THE CRITERION FOR SUPERCONDUCTIVITY 1455 

(28) (Translation, Consultants Bureau, New York, 1959). 

i.e., that the frequency is low enough (wavelength 
long compared with the lattice constant). 

C. Finally, we get from (25) the equation (19) 
for the screened electron-electron interaction by 
setting p = "", i.e., neglecting the lattice vibrations 
and the possibility of an associated phonon-induced 
interaction. 

Using (25), we can obtain a criterion for super­
conductivity which is more exact than (23) when 
charge compensation is not total; it reads 

ro,. 
s=k. 

(29) 

Unfortunately, however, the presence in (29) of the 
"bare" constant A. makes it impossible to compare 
this criterion with experiment. 

In conclusion I should like to express deep grati­
tude to I. M. Lifshitz for discussing this work, to 
A. A. Abrikosov and L. P. Gor'kov for a number of 
critical comments and to L. A. Fal'kovskil for his 
interest in the work and for helpful discussions. 
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