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The transformation properties of spin functions of particles (i.e., the "spin kinematics") is 
studied in the space of relative particle velocities, which is a Lobachevskil space. The Q
representation for the spin functions is introduced, in which the matrices of the operators of 
the rotation group coincide with the matrices of the operators of the stationary subgroup of 
the particle velocity. The discrete transformations are discussed in the Q-representation. 
As an example, the technique is applied to the construction of the amplitudes and of the final 
state density matrix for Compton scattering. The problem of the connection between observa
ble quantities for elastic scattering and annihilation reactions is considered. 

1. INTRODUCTION 

0 VER the past few years a series of papers 
has appeared [ 1-4] , in which attention is called 
to the usefulness of describing kinematics of 
relativistic particles in terms of Lobachev
skian geometry. For the sake of geometrical 
interpretation it is necessary to consider only 
particles with a definite momentum, which ex
cludes the possibility of considering interac
tions. However, in the framework of S-matrix 
theory, only asymptotic states (i.e., states of 
real particles with definite momenta) are used. 
Therefore it seems natural to interpret the 
quantities that occur in the theory by means of 
Lobachevskian geometry. These advantages 
become especially evident in the treatment of 
particles with spin. The usual covariant 
formalism leads to extremely complicated and 
clumsy equations which are devoid of intuitive 
content. Even though a certain amount of auto
matism is involved, computations based on the 
use of this formalism are sufficiently tiresome. 
At the same time, after writing the scattering 
matrix in covariant form, one goes over for 
simplicity to a non-covariant notation in a cer
tain reference system. The equations obtained 
in this manner are no less clumsy and lack the 
intuitive clarity which the nonrelativistic 
formulas exhibit. This is connected with the 
fact that one cannot separate the coordinate 
and spin functions in the covariant description 
of spin. The spin and orbital angular momenta 
transform jointly under Lorentz transformations, 
and only their sum is a constant of the motion. 

The description in the framework of velocity 

space permits to bring the relativistic equations to 
a form as simple and as intuitive as the nonrela
tivistic ones. All quantities are expressed in terms 
of the relative velocities of the particles and of the 
angles between them, quantities which are invar
iant with respect to Lorentz transformations. The 
resulting equations look like the nonrelativistic 
ones, and relativity manifests itself through the 
noneuclidean character of the velocity space, which 
has the geometry of a space of constant negative 
curvature. 

2. THE SPACE OF RELATIVE VELOCITIES 

As is well known, kinematics is the geometry of 
velocities. Therefore it is natural that the phenom
ena of relativistic kinematics have an intuitive in
terpretation in the space of relative velocities of 
the particles f zJ. The representations of the Lor
entz group, or more correctly, the representations 
of the stationary subgroup of the velocity four
vector of the particle ("little group") are connec
ted with the ''kinematics'' of the spin of that parti
cle. Therefore it seems natural to consider the 
wave function of a particle, which generates a 
representation of the stationary subgroup, as a 
function defined in the space of relative velocities. 

The four-velocity satisfies the relation 

(1) 

We associate with each velocity four-vector the 
point which its extremity defines on the hyper
boloid (1). We thus obtain the three-dimensional 
space of relative velocities. The geometry of this 
space, which is Lobachevskian, has been treated in 
detail by Smorodinski 1 [ zJ . 

1443 



1444 A. M. KHROMYKH 

The transformations of the proper Lorentz 
group, acting in the space of 4-velocities, trans
form the upper sheet of the hyperboloid into itself. 
They thus generate transformations of the points 
which represent the relative velocities of the par
ticles, i.e. they generate a transitive group (group 
of motions) on the surface of the hyperboloid. The 
stationary subgroup of a point of Lobachevskil 
space is then isomorphic to the rotation group. 

For the sake of simplicity, in what follows we 
will not consider the three-dimensional hyperbol
oid, but the two-dimensional surface of the hyper
boloid, i.e. a plane in Lobachevskil space. 

In the same manner as the Euclidean plane, a 
Lobachevskil plane is determined by three of its 
points which are not collinear. The three 4-veloci
ties corresponding to these points, determine the 
invariant normal vector to the plane. Let these 
points be denoted by 1, 2, 3 and the corresponding 
4-velocities by u1, u 2, u3, respectively. Then the 
4-vector 

(2) 

is the invariant normal vector. Assuming, for in
stance, u1 = u0, where u 0 is the 4-velocity of the 
rest system, we obtain 

(3)* 

where v is the unit vector along the relative veloc
ity of the corresponding point. 

3. THE Q-REPRESENTATION 

The isomorphism between the stationary sub
group G(u) of a point in Lobachevskil space and the 
three-dimensional rotation group R3 allows us to 
consider the representations of the group G(u) in 
the space of spin functions of a Dirac particle as 
representations of the rotation group. However, 
the bispinor u+ which describes a positive frequency 
particle has four components, although, owing to 
the Dirac equation, only two components are inde
pendent. Therefore it is natural to try to select a 
base in the representation space of the group G(u) 
in which the spinor has only two nonvanishing com
ponents. 

In the selected reference system (which will 
always be considered at rest) we associate to each 
rotation a transformation of the group G(u). Let 
g 0(u) denote the transformation which transforms 
the vector u into the vector u 0; then the group G(u) 
is obtained from the rotation group in the following 
manner: 

*[v'v'] = v' x v2 , sh =sinh. 

(4) 

and the corresponding representation operators of 
these groups are connected by the relation T(G) 
= L-1 (g0) T(R) L(go) · 

In the representation space of the group G(u) we 
choose a base in which the operators representing 
the rotation group T(R) correspond to identical 
operators T(G). It is easy to see that in order to 
achieve this it is necessary to carry out a trans
formation in the representation space of the group 
G(u) corresponding to the Lorentz transformation 
g 0(u). The Lorentz transformation of a bispinor 
under a transformation from the system in which 
the particle had the 4-velocity v, into the system 
in which the particle has the velocity u, has the 
form 

_ ( 1 + ch(uv) )'12 (1 - CJiJ,U;VR. ) ; 
L(u, v) - 2 1 + ch (uv) 

CJ;R. = I /2 ( YiYR. - YR.Yi). (5)* 

In order to emphasize the fact that a transforma
tion of the base is carried out in the representation 
space belonging to one fixed reference system, and 
not a Lorentz transformation g 0, transforming the 
particle from the point u into the point u0, we in
troduce the notation 

L-1(go) = Q(u, uo) = ( e tmm )"'( 1- e ~ m ) . (6) 

It is easy to verify that the spinor which corre
sponds to a positive frequency plane wave will have 
only two non-vanishing components in this Q-repre
sentation: 

(7) 

This transformation can be given an intuitive 
geometric interpretation [ 1]. Let us consider the 
expectation value (cpQCTcpQ) of the spin operator, or 
of any other vector or tensor operator, in the 
Q-representation, and let us compare these with 
the same quantities for the particle at rest. It 
turns out that the quantities computed in the 
Q-representation in the system in which the parti
cle has the 4-velocity u coincide with the corre
sponding quantities obtained by parallel translation 
from the rest system of the particle. 

Thus we have associated to each rotation in the 
chosen reference system a rotation in the rest sys
tem of the particle. However, the operator which 
realizes the isomorphism between the rotation 
group and the stationary subgroup of the vector u 
naturally depends also on the vector u. Therefore 

*ch =cosh. 
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a change from the system in which the particle has 
velocity u, to the system in which it has the veloc
ity v, will also change the operator Q, i.e. each 
Lorentz system will have its own base in which the 
spinor u+ becomes a two-component object. One 
may however consider that under a transformation 
from one reference system to another the spinor 
itself is subjected to a certain transformation, 
rather than transform the base. 

We consider now the function in the Q-represen
tation in the reference systems in which the par
ticle has the velocities u and v. From Eqs. (5)-(7) 
it follows 

cpQ(v) = Q(v, u0)L(v, u)Q-1 (u, u0)cpQ(u) 

=exp{ianQ/2}(PQ(u), (8) 

where n is the unit vector perpendicular to the 
Lobachevskil plane and 

Q 
cos-z = [1 + ch(vu0) +ch(uu0) + ch(uv)] 

X r4ch~u0) ch (uuO) chj_uv)r1 (9) 
[ 2 2 2 . 

Comparing Eq. (9) with the expression for the area 
of a triangle in the Lobachevskil plane [ 5], we find 
that the quantity g coincides with the area of the 
triangle with vertices in the points v, u, and u0• 

This result can be interpreted as follows. With 
each rotation in the point u0 are associated rota
tions in the points u and v. If one establishes a 
direct correspondence between the rotations in the 
points u and v, one can see that these latter rota
tions differ by a rotation around the normal to the 
Lobachevskil plane by an angle equal to the area of 
the triangle formed by the points u, v, u0 and in a 
direction opposite to the one determined by the 
orientation of the contour of the triangle. This 
rotation is due to the curvature of the velocity 
space, which manifests itself in the fact that the 
motions in this space (i.e., the Lorentz transforma
tions) do not commute with rotations. 

One usually considers the Foldy-Wouthuysen 
transformation [ B] which also reduces a spin or to 
two-component form in a given reference system. 
However, in this representation the spin or differs 
from the one in the Q-representation by a non
invariant multiplier: <PFW = (E/m) 112 <PQ and there
fore it becomes impossible to attribute a simple 
geometrical meaning to the transformations of the 
operators. 

The Q-representation can be generalized in a 
natural manner to vector particles. Let the parti
cle have 4-velocity v and an amplitude f satisfying 
the condition (vf) = 0. We define the operator Q by 
means of the following equation: 

Under Lorentz transformation from one reference 
system to another the vector fQ transforms as: 

!a.Q(v) = Ta.f3(v, u)ft3Q(u). 

The expression for Ta{3 can be expressed in 
terms of the spin operator: 

T a.f3 = ba.f3 cos Q + in...,e..,a.f3 sin Q = exp{isn Q}. (10) 

One could derive similar transformation formu
las for the wave functions in the Q-rcpresentation 
of particles with higher spins, but we will not give 
them here. 

4. DISCRETE TRANSFORMATIONS IN THE 
Q-REPRESENTATION 

To include in the present description of parti
cles with spin in the Q-representation the opera
tions of space reflection, time reversal, and also 
charge conjugation, it is necessary to consider not 
only the positive-frequency solutions of the rela
tivistic equations, but also the negative-frequency 
solutions. We consider only the case of spinor 
particles, which is the most interesting one for 
applications. 

For a geometric interpretation of the negative
frequency solutions it is natural to make use of the 
lower shell of the hyperboloid (1). We can assoc
iate with negative frequency solutions a velocity 
4-vector which is opposite to the one for positive 
frequencies, i.e., it has its end-point on the lower 
shell of the hyperboloid. However, real particles 
cannot have a negative time-component of the 
4-velocity, therefore one should associate with 
such solutions Dirac holes and represent these by 
points on the lower shell of the hyperboloid. 

Thus, in the Q-representation, a general solu
tion of the Dirac equation can be written in the form 

\jJQ = ( b ) eipx + ( ~ ) e-ipx. (11) 

The two-component spinors <p and x are linear 
combinations of the canonical components of the 
bispinor, i.e., of the dotted spinor 7JA_ and the un
dotted spin or ~A: 

cr = <s" + "'h) 1 V2, " -.r-X = <s - rJ,.) 1,.. 2. 

Under space reflections the quantities <p and x 
transform independently and the operator p has the 
form 

(12) 

where Up = (!: · n) is the unitary operator deter
mined by the condition that the normal components 
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(a . n) of the matrix a commute with Up, whereas 
the other components anticommute. 

We now consider the operation which corre
sponds to the nonrelativistic "time reversal" Tw, 
or, following Wigner, to the operation of "reversal 
of motion.'' In nonrelativistic theories this opera
tion is defined by an antiunitary operator 
(cf. e.g. [7]); in the case of the Lorentz group a 
similar condition is implied by the supplementary 
physical requirement that the energy of the parti
cle be positive[ 8J. The antiunitary operator can be 
represented in the form 

Tw = iUTH, (13) 

where H is the operator of Hermitean conjugation 
and u T = (!: · v) is the unitary operator defined 
through its commutation relations with the com
ponents of a, analogously to the case of space 
reflection. 

The change in sign of the fourth component of 
the 4-momentum is compensated in this case by 
taking complex conjugates of observables and by 
changing the state in which a particle is absorbed 
into the state in which the same particle is emitted. 
In other words, the operation Tw transforms the 
two shells of the hyperboloid into themselves, 
changing only the positions of points into their 
opposites on each hyperboloid shell, and thus 
changing the directions of relative velocities. 

However, relativistic theory admits of another 
possibility of getting rid of the negative energy 
states that appear. This possibility is connected 
with particle-antiparticle conjugation. With the 
notation 

Eq. (13) for the operator Tw can be rewritten in 
the form 

where T is the transposition operator. 
Defining the charge conjugation operator C as 

(14) 

it is easy to conclude from (13) and (14) that the 
"strong time reversal" operator T s will have the 
form 

(15) 

We also consider the operation of "strong space
time reflection" (CPT) x- -x'. The correspond
ing operator has the form 

l'¢e = CT wP..Pe = - {!:n) {!:v)'\'5'\'~'i'e· (16) 

For the following it is useful to write explicit 

expressions for the action of these operators on 
positive frequency two-component wave functions: 

Pq; = i{an)qJ, TwqJ = iH(av)qJ = iqJ+(av), 

Ts(jl = -i{av)xe, lqJ = i{a[vn])Xe. (17) 

5. MASSLESS PARTICLES 

For particles of zero rest mass (we consider 
only the photon) the 4-velocity as defined by 
u = p/m is infinite and Eq. (1) is no longer valid. 
However, for a geometrical interpretation in a 
Lobachevskil space one can associate these vec
tors with the ensemble of infinitely distant points. 
The 4-vectors corresponding to such infinitely dis
tant points are situated on the light cone. 

Thus, massless particles are included in a 
natural manner in the scheme under consideration. 
However, the stationary subgroup (little group) of 
a generator of the cone differs essentially from the 
stationary subgroup of the hyperboloid. As is well 
known this subgroup is isomorphic to the group of 
motions of the Euclidean plane orthogonal to the 
particle 3-momentum (two-dimensional Euclidean 
group). 

Since the stationary subgroup does not contain 
transformations which change the direction of the 
3-momentum, eigenfunctions of the rotation matrix 
around the momentum vector belonging to given 
eigenvalues form invariant sub spaces. Therefore 
the spin of a massless particle is "rigidly" coup
led with its direction of motion and its projection 
on the direction of motion-the helicity of the par
ticle-is a relativistic invariant. 

It is convenient to describe the photon by means 
of invariant helicity amplitudes. There are only 
two such amplitudes, so that formally the photon 
appears in this description as a two-component 
particle. We define in an arbitrary Lorentz system 
the vectors 

~+ = - (m- in) I 1'2, ~- = (m +in) /1'2, (18) 

where n is the invariant normal and m = v x n 
(where v is the unit vector along the direction of 
motion of the photon). Then the components of the 
vector amplitude along these vectors will be eigen
functions of the helicity operator (spin projection 
along the direction of motion of the photon) corre
sponding to the eigenvalues 1 and -1, i.e., they will 
be helicity amplitudes. Constructing the two-com
ponent quantity 

(19) 

out of these amplitudes, a quantity which formally 
resembles a spinor, one can elegantly rewrite the 



SPIN KINEMATICS IN LOBACHEVSKil SPACE 1447 

equations involving photon amplitudes by means of 
Pauli matrices, and the form of the resulting equa
tion will be relativistically invariant. 

Under space reflection t+ transforms into t_ 
and the vector amplitude e changes sign. Thus, the 
operator p has the form 

p (~:~:D = - o:~:D = _ alf· (20) 

Similarly, under time reversal (since the photon is 
neutral, strong and weak time reversal are indis
tinguishable) 

Tf = crJ". (21) 

6. COMPTON SCATTERING IN THE Q-REPRE
SENTATION 

We consider the scattering of a photon on a 
spinor particle. The figure represents the kine
matical diagram for this process. In the Poincare 
model the Lobachevski 1 plane is represented by 
the interior of the unit circle while the circum
ference of the unit circle corresponds to the in
finitely distant points. The "straight lines" are 
circle arcs, orthogonal to the unit circle. The 
points k and k', p and p' in the diagram represent 
the initial and final photons and spinor particles, 
respectively. The point 0 corresponds to the rest 
system; for the given reaction it coincides with the 
center of mass system of the reaction. Lorentz 
transformations generate an automorphism of the 
unit circle, such that distances measured along the 
"straight lines" between two points are preserved, 
as well as the angles between two such "lines." 
Therefore each point in the circle can be consid
ered a reference system, measuring distances and 
angles from this point. 

The Compton scattering amplitude is written in 
the form* 

m 
T =(2:rt)l ZV2 ( , ')'i U(s, t, u), 

ee ww ' 

where V is the normalization volume, E, E', w, and 
w' are the energies of the particles and the photons, 
in the initial and final states respectively, and m 
is the mass of the particles. The invariant ampli
tude U(s, t, u) is determined by six invariant func
tions of the kinematic variables. 

In order to write out the matrix U(s, t, u) we 
first consider the spinor amplitudes. We select 
the reference system in the point B of the figure. 
This point corresponds to the so-called Breit sys-

*Here u is the third Mandelstam variable and not a 4-
velocity! (Transl. note) 

tern, i.e., the reference system in which the particle 
is scattered backwards. In this system one can 
construct four independent scalars out of the spinor 
amplitude if; of the final particle and the amplitude 
cp of the initial particle (we will call a scalar a 
quantity which does not change under rotations, 
whereas a Lorentz scalar will be called an invar
iant), namely: 

1jl*<p, INI'iJ"(on)<p, jvj1jl"(av)<p, I [vnJ l'i'" (alvn])<p. 

(22) 

The invariant multipliers in front of the spinor 
"blocks" have their origin in the normalization of 
the base vectors. 

The four spinor "blocks" in (22) behave differ
ently under space reflection and weak time reversal. 
The first and second "blocks" are scalars, whereas 
the third and fourth "blocks" are pseudoscalars. 
Under time reversal the third "block" changes its 
sign, the other three remain unchanged. According 
to the!;; rules established above, the "blocks" 
which have been constructed in the Breit system 
can be transformed into any other system, and thus 
one obtains the amplitudes in that system. 

Let us now consider the photon amplitudes. As 
has been shown in Sec. 5, it is convenient to des
cribe photons by means of helicity amplitudes. In a 
reaction in which two photons participate, one can 
construct out of the helicity amplitudes of these 
photons four different combinations which can be 
written compactly in terms of the photon '' spinors'' 
f, defined in Eq. (19): 

f"f = (eb+)'"(eb+) + (eb-)'"(eb-), 

f'"-r:J = (eb+)'*(eb-) + (eb-) (eb+), 

f'*-r:d = -i[ (eb+)'"(eb-)- (eb-)'"(eb+) J, 

f'*-r:3j = (eb+)'"(eb+)- (eb-)'"(eb-). (23) 

It is easy to verify that the first two of these com
binations are invariant with respect to space re
flection whereas the last two change signs. Under 
time reversal only the third combination changes 
sign. 

Out of the spinor "blocks" (22) and the photon 
"spinors" (23) one can construct only six com
binations which are invariant under weak time re-
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versal. Multiplying each such combination by an 
invariant function of the kinematic variables, we 
obtain the final result, valid in any reference frame 

U=f'"(R(s, t, u) +R(s, t, u)'t')/; 

2R = ljl*exp{i(JnQzl 2} (<Dt + INI<D2i((Jn)) 

(24) 

X exp{i(JnQt I 2}((Jcha, 

2Rx = ¢"exp {i(JnQ2 / 2} (<I> a+ IN I <D,i( (JD)) 

X exp{i(JnQt I 2}((Jcha, 

2iRy = <D5¢*exp{i(JnQ2 I 2} (O'V)exp{i(JnQt I 2}qJsha, 

2Rz = IN I <D6ljl • exp { i(JnQ2 I 2} ( (J [ vn]) exp { i(JnQt I 2} (jJSha, 

(25) 

where a is the length of the arc between the points 
Band p on the hyperboloid, i.e., cosh a= E/m 
where E is the energy of one of the particles in the 
Breit system. 

The choice of the Breit system as a basic one 
was determined only by considerations of conven
ience. One could have started from any reference 
system and defined different sets of invariant am
plitudes, in analogy to a different choice of indepen
dent invariants in the ordinary formulation of the 
scattering matrix. 

Utilizing the amplitude written in the Q-repre
sentation it is easy to go over to the annihilation 
channel. As is well known, the scattering and 
annihilation reactions are connected by means of 
the T s transformation, applied only to the final 
state particle and the initial state photon, and not 
to all particles simultaneously. Making use of the 
expressions (17) and (21) for the operator Ts and 
taking into account the fact that the variables s and 
t exchange their roles, we derive from (24) and 
(25) the amplitude for the annihilation of two par
ticles: 

V = 2/'* (R + R-:) -r:d:; 
2R = - ix* exp {ian!.\ I 2} (av) (cD1 +IN I CD 2 i (an)) 

X exp {ianQ112} (jJ ch a, 

2Rx =- ix* exp {ian&1~ / 2} ( av) (<Da + IN I <D4 i (an)) 

X exp {ianQ1 I 2} cp ch a, 

2iRy =- ix* Pxp {ianQ2 I 2} (av) <D5 exp {ianQ1 I 2} cp sh a, 

2Rz =- i: N I <1\;x* exp {ianQ 2 I 2} (a [vnl) 

X exp {ianQ1 I 2} cp sh a. (26) 

A bar above an invariant quantity denotes the usual 
change of variables for a crossed reaction. 

The Compton scattering amplitudes derived 
above allow for a simple calculation of the final 
state density matrix. Denoting the initial state 
density matrices for the particle and the photon 
respectively by 

Pe=cpcp'= (1+~(J)I2, PT=(1+s't')l2, (27) 

where ?; is the particle polarization vector and ~ 
are the Stokes parameters, one can write the den
sity matrix for the final state in the form 

p = exp {i(JnQ2 I 2}M exp {i(JnQt I 2}PePv 

Xexp {-i(JnQ1 12}.ilf+ exp {-i(JnQzl2}. (28) 

In this form the kinematic and dynamic effects 
of the reaction are explicitly separated. We will 
not write out the expressions for concrete quanti
ties (cross sections, polarizations etc.), since the 
simpler ones have already been computed by many 
authors [B, 10] and complete expressions have been 
obtained by Frolov[ 11] who operated with covariant 
quantities, although an example of such calculations 
would again exhibit the advantage of the description 
of processes in the Q-representation. 

The matrix (28) is simply related to the analog
ous matrix for the annihilation channel. The anti
particle density matrix, has in terms of the spinor 
x the form 

r = 'Xx* = (1- ~)I 2, 

where f is the polarization of the antiparticle. 
Making use of the transformation properties of 
spinor and photon amplitudes under the Ts trans
formation, it is easy to verify that the final state 
density matrix for the annihilation reaction has 
exactly the same structure as the matrix for elas
tic scattering, if one carries out the following sub
stitutions among the photon variables: 

and among the particle variables: 

(av)-+- (~v), (an)-+ {tn), (a [vnl) -> (~ [vnl), 

together with a corresponding permutation of the 
kinematic variables in the invariant functions. 
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Ya. A. Smorodinskil for his constant interest in 
this work and valuable advice. 
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