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The energy losses of a fast charged particle moving through a plasma layer are computed by 
quantum field-theoretic methods. The losses due to excitation of volume and surface plas
mons are considered as well as those due to binary collisions at the surface and inside the 
plasma layer. Primary attention is given to the surface plasmons, which have not been 
studied before in any detail. We consider the dependence of the plasmon spectrum on the 
thickness in thin films; the dependence reflects the discreteness of the plasma electron 
momentum. Certain features of the energy spectrum of the surface plasmons in a plasma 
with diffuse boundaries have also been studied. 

THE characteristic losses arising in the passage 
of a fast charged particle through a plasma have 
been treated many times, both classically and by 
quantum-theoretic methods [ 1- 3] (Silin and RukhadzJ2J 
give an extensive bibliography on this subject). In 
all of this work the plasma has been regarded as 
an unbounded system and edge effects have been 
neglected; this approach to the problem leads to a 
number of difficulties. In the first place, neglecting 
edge effects means that the so-called surface 
plasmons do not appear, but in recent years the 
effect of surface plasmons has become extremely 
important from both the theoretical [ 4-TJ and ex
perimental [B- 9] points of view. It was first pointed 
out by Ritchie[4J that the losses due to the excita
tion of surface plasmons in very thin films can be 
decisive in certain cases. 1> Second, the edge effect 
is manifest in the reduction in the characteristic 
losses due to the excitation of volume plasmons. 
Finally, the existence of surface plasmons implies 

l)It should be noted that the solutions given by Garibyan, 
Silin, and Fetisov in the analysis of transition radiation and 
the skin effect [' 0""~ 2 ] contain fields corresponding to the sur
face plasmons, since these are exact solutions. However, 
since the surface plasmons are neither excited by transverse 
waves nor radiate transverse waves [6 ] they actually drop out 
of the analysis in these problems. The statement by Ferrell [5 ] 

that surface plasmons make a contribution to the transition 
radiation [11 ] in thin films is also erroneous. The contribution 
to this radiation is actually due to the so-called optical plas
mons, which only exist in thin films; [13 ] the net effect is to 
make the intensity of the transition radiation higher in thin 
films than in thick films, a result that has been verified expe
rimentally. 

a modification of the volume-plasmon spectrum in 
thin films. 

The present work is devoted to an investigation 
of the above-mentioned features of the problem. 
The stopping power of the plasma layer is ex
pressed in terms of an electromagnetic field corre
lation function, which is simply related to the re
tarded Green's function. In the analysis we shall 
only take account of the Coulomb interaction be
tween particles. The resulting expression then 
contains the losses of the charged particle due to 
the excitation of both volume and surface plasmons 
(collective losses) as well as those due to binary 
collisions at the surface and within the film. When 
spatial dispersion is neglected (collective losses 
only) our results coincide with the corresponding 
results given by Ritchie; [4] if edge effects are 
neglected our results coincide with those given 
by Larkin. [ 3] 

Thin metal films (~ 100 A) exhibit an experi
mentally observable dependence of plasma fre
quency on film thickness; this effect is due speci
fically to the quantum nature of the electrons in the 
film, more precisely, the discreteness of the elec-

l 
tron momentum. The discreteness in electron 
momentum is much more important than the dis
creteness in the plasmon wave vector considered 
by Ichikawa. [ 14] 

Finally, we consider surface plasmons in a 
plasma with diffuse boundaries. An important fac
tor in this case is the specific plasma damping of 
surface plasmons due to the conversion of the en
ergy of the surface plasmon into the energy of a 
volume plasmon in regions in which volume plas
mons can exist i.e., in the region E(w, r) = 0. 

1424 
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1. TRANSITION PROBABILITY 

We consider a plasma slab of thickness d 
(O < x3 < d) bounded on both sides by a nonabsorb
ing dielectric medium whose dielectric constant is 
set equal to unity. Assume that the particle moving 
through the slab has mass M and velocity v and that 
the velocity is high enough so that the interaction 
with the particles in the plasma can be treated by 
perturbation-theoretic methods. The system 
Hamiltonian is 

(1) 

where Hn is the Hamiltonian for the plasma slab, 
which contains all interactions between the parti
cles, H0 is the Hamiltonian for the freely moving 
particle, and H1 is the Hamiltonian that describes 
the interaction between the incident particle and 
the plasma: 

(2) 

where j JJ. (x) is the operator characterizing the cur
rent associated with the moving particle; it will be 
assumed hereinafter that the current operator com
mutes with the operators of the plasma particles 
~exchange effects are neglected). To first order in 
H1• in the usual way we now obtain the probability 
for transition of the external particle from state p 
into state p' by summing over final states and sta
tistically averaging over initial plasma states (the 
states p and p' are not necessarily plane-wave 
states) 

W P-+P' = i ~ (p lj" (x) I p') (p'l jv (x') I p) D""+ (x, x') d4x d4x', 

(3) 

where 

(4) 

is the electromagnetic field correlation function; 
the Fourier components of this function are related 
to the retarded Green's function DR (x, x', w) by 

r J JJ.V 
the expression: L 15 

D + ( I ) 2i D R ( ' ) "" x, x , w = . ~ Im "" x, x , w . ,1-e-"' 
( 5) 

The average in ( 4) is taken over a Gibbs distribu
tion. 

Assuming that the initial and final electron 
states are stationary states with momenta p and 
p' = p - k and corresponding energies Ecp and Ep' 
we obtain the transition probability per unit time 
from (3): 

W , __ 2a~'-v (p, p') Im D~'-vR (k, k, w) . 
p-+p - 1-e-"'~ ' (6) 

D!J-vR (k, k, w) = ~ D!J-vR (x, x') e-i[k(x-x')-w(t-t')J d3xd3x'dt, 

(pI j!J- (x) I p') (p' I iv (x') 1 p) = a!J-v (p, p') e-i[k(x-x')-w(t-t')J, (7) 

w = Ep- Ep-k· Thus the entire problem has been 
reduced to that of finding the retarded Green's 
function for the electromagnetic field of the sys
tem. 

In an infinite uniform plasma 

( 8) 

(V is the volume of the system) and the results of 
Larkin [ 3] and Alekseev[ 1sJ are obtained. 

Only the Coulomb interaction of the incoming 
particle with the plasma is considered. In this case 
(6) yields 

2e2 R 
Wp-+p' = 1 _ e-wl> Im D (k, k, w) 

2. ENERGY SPECTRUM 

In finding DR (k, k', w) it will be found convenient 
to start with the equation for the temperature 
Green's function D(x, x') which is of the form [ 15] 

LlD(x, x')- ~IT (x, y)D(y, x') d4y = 64(x- x'), (10) 

where II (x, y) is the polarization operator of the 
system while the Fourier components RR(x, x', w) 

and D(x, x', k4) obey the relations 

D(k4, x, x') = DR(w = ik4, x, x'), k. > 0. (11) 

Since the exact value of II(x, y) can not be found 
we must make a number of simplifying assumptions 
at this point. 

1. We assume that the following inequalities 
are satisfied 

I dAa(x) / dxl~ 1, (12) 

where A. e(X) is the DeBroglie wavelength, rD is the 
Debye radius, and r 0 is the characteristic scale 
length of the inhomogeneity in the system (herein
after this distance will be set equal to the thick
ness of the plasma slab). The semiclassical ap
proximation [ 1 T] can then be used to describe the 
individual electron characteristics. 

2. In the usual way we assume for simplicity 
that the ion charge is uniformly smeared over the 
thickness of the film. Then the space charge, which 
is due primarily to the contact potential difference 
and free carriers, is localized at the boundary 
(for example, near a pn junction). The size of 
this region (L) is an inyerse function of the car
rier concentration. For example, in metals 
L « 10- 7 em; in semiconductors used in tunnel 
diodes L ~ 10-6 em. 
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Several different limiting cases exist depending 
on the relation between L, d, and A. f (the distance 
over which the electromagnetic field changes 
significantly, say the wavelength): a) the geometric
optics approximation 

(13) 

or in more general form 

ldt.J(x) I dxl ~ 1, (13') 

b) the approximation in which the boundary separ
ating the two uniform media is sharp 

L~d, (14) 

c) the inhomogeneous system 

d '::;;:L,...., AJ. (15) 

The energy spectrum of the plasma in case a) has 
been investigated fairly completely in [ 18]. Here 
we shall be concerned with case b). 

The condition in (14) states that the nature of 
the charge distribution in the region L is unimpor
tant. Thus, we assume that the surplus charge in 
this region is distributed over the surface. This 
refers to electrons at the Tamm surface levels, 
adsorption states, and other states localized close 
to the surfacE.. For simplicity we assume that the 
relative contribution of these surface electrons is 
small in the process at hand i.e., these electrons 
are shunted by the internal electrons. Under these 
assumptions the solution of Eq. (10) is not espec
ially difficult. Since the solution is a complex one 
we shall not reproduce it here; instead we write 
the expression for the probability (9) 

4e2 

w = -:----:: 1- e-ro~ 

{ 1 [ 2 . k.J..d "' 1 
X lm ac + 1/ku dk.J..smz'.el (ka2- k.1..2)k2e(k,w) 

k.J..sin(k.J..d/2)-kllcos(k.J..d/2) ] 2 

k 11 (k.1..2 +k11 2) 

1 [ 2 k.J..d 1 
+ . - k .J.. cos - ~ --:7""::----:--:::-:-=-----::---:-

aa + 1/ku d 2 "•• (k32- k.1..2)k2e(k, w) 

_ k.1.. cos(k.J..d/2) + ku sin(k.J..d/2) ]2 

ku(k.J..2+ku2) 

_ k 2 [ 2 . 2 k.1..d "' 1 2 2 k.1..d 
.J.. d 8m 2 Li (k2-k 2)2k2 (k ) +dcos -2-"•c 3 .J.. e '(J) 

X ~ (ks2- k.J..2~2k2e(k, w) ]}. (16) 
3 

Here, E (k, w) is the plasma dielectric constant 
while k1 and k11 are the perpendicular and parallel 

components of k (with respect to the surface of the 
film) 

2 1 
ac, a = d ~ k2e (k ;) ' 

li:,C, a ' 

(17) 

k3c = 2n:n: I d, kaa = (2n + 1) :n: I d, n=O, +1, ±2 ... 
(18) 

It is evident from (16) that the energy loss of a 
fast particle traversing a plasma slab appears at 
the absorption poles and at discrete frequencies 
given by the dispersion relations 

e(ku, k.1..) = 0, (19) 

ac, a(kll, w) + 1 I k11 = 0. (20) 

The dispersion relation in (19), which corresponds 
to the so-called volume plasmon, has been thor
oughly investigated by many authors. The disper
sion relations in (20) correspond to tangential 
(a =a c) and normal (a = aa) plasmons. It is evi
dent from (18) and (20) that the normal and tangen
tial plasmons are due to electron transitions of 
various kinds. The normal plasmons arise from 
electron transitions between states of opposite 
parity (summation over k~) while the tangential 
plasmons arise from transitions between states 
of the same parity (the summation is taken over 
kf). 

It is interesting to note that odd electron states 
do not appear in the application of periodic boun
dary conditions and this leads to the absence of 
normal plasmons. The problem at hand is a case 
in which the energy spectrum of a system depends 
qualitatively on the concrete form of the boundary 
conditions. The correct boundary conditions are 
especially important when the film is very thin be
cause in this case the normal plasmon energy spec
trum is considerably different from that of tangen
tial plasmons; moreover, in thin films greatest 
interest attaches to the normal plasmons because 
these make the chief contribution to transition 
radiation [ 13 ] (here we are concerned with optical 
normal plasmons). 

For the case of a one-component plasma in the 
free electron approximation when 

(21) 

the dispersion relations (20) yield the two branches 

+ w!,, k . le(wn,,) 12 k 
--an,,; i!VT - ~ JIVT1 

wo2 'fn lel 2 

(22) 

an,"= a(wn, .,fwo, d), e = e(k, w) lro~hvT, (23) 

where VT is the thermal velocity of the plasma 
electrons and w 0 is the plasma frequency. The 
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meaning of the various terms in (22) is discussed 
in [ 13] and will not be considered further here. 

In thin films, (k11d « 1) (22) gives 

• (k 11 d) (knvT) 
con=co0 (1-k 11 dj4)+ank 11 vT-l ,r- • 

2rnJe!2 

co~= roo Jfk 11 df2 + 1/2a~ (k 11 d) (k 11 vT)- i(2vTfd)JJfnJeJ2. 

(22') 

In thick films (k11 d » 1) 

con~ co.,.~ coo!Y2 + 1/2an,.,.kuvT- ikuvTI2Yn!e! 2• (22") 

The dispersion relation in (22") is interesting: 
because of spatial dispersion the energy loss due 
to the excitation of surface plasmons is a linear 
function of the scattering angle J: 

till ~ roo /11 + e~ + an, .,.pwtt /2( 1 + eo-1} (24) 

(Eo is the dielectric constant of the medium sur
rounding the film, for example an oxide of the film, 
which has not been considered before); this is in 
contrast with the quadratic dependence of the loss 
due to the excitation of volume plasmons. To verify 
(24) we have taken experimental points for Al from 
the work of Kunz [ 9] which appear to give a good fit 
to the line (24) with an, T ~ 0.8. It should be noted 
that very few data points were available and it 
would be desirable to carry out more careful ex
periments in order to check this result. 

To treat high-momentum excitations E(k, w) 
should be given by the expression: [ 2] 

roo2 
e(k co)= 1- (25) 

' co2- (k2/2m)2' 

Substituting (25) in (20) we obtain two kinds of exci
tations: surface excitations, characterized by the 
frequencies 

2 ku4 ( roo4 ) 
COs, n ~ roo2 +4m2 1 - 2co48, n[1 + th(knd/2)]2 (26)* 

(normal surface plasmons) and 

2 ku4r ~· 
COs T ~ COo2 + -- f - -;:--;----;-:---,-------::--:-:--::-;:::-:-:; 

' 4m2 2(J)4s,..-[1+cth(kud/2)]2 

(27)t· 

(tangential surface plasmons) and volume excita
tions, characterized by the frequencies 

rov2 ~ (J)o2 + { 2~[ ku2 +( n; YJf. n = 1, 2,.... (28) 

where odd n corresponds to normal excitations and 
the even n corresponds to tangential excitations. 

Surface plasmons with high momenta k 11 (in con
trast with plasmons with small k 11 ) are damped 
much more rapidly as a function of distance from 

*th =tanh. 
tcth = coth. 

the boundary into the surrounding medium in the 
direction into the plasma. The plasmon, which 
represents a single completely defined ensemble 
of electron excitations and the electromagnetic 
field, consists primarily of electron excitations at 
high kll· Because of the boundary conditions that 
have been used these electron excitations are local
ized within the film; however, the localization of 
the plasmon outside the film is due only to the elec
tromagnetic field, and the electromagnetic contri
bution to the plasmon is relatively small. 

3. STOPPING POWER OF THE PLASMA LAYER 

We first consider losses due to collective exci
tations (transfer of small momenta to the medium) 
i.e., k 11 vT « w 0• Under these conditions th·· total 
loss is not very sensitive to the spatial dispcTsion 
of the dielectric constant; neglecting spatial (1\ s
persion we have from (16) 

W=- 2e2
- Im{[d- 2ku(. 2kJ.d h k 11d 

(1- e-"'~)k2 k2 sm 2 ct 2 

2 kJ.d k11d)] 1 Sku 
+cos Tth-2- e(co) + k2(1- e-2knd) 

( sin2(kJ.d/2) cos2 (kJ.d/2) )} 
X e(ro)+th(kud/2) + e(co)+ cth(kud/2) · 

(29) 

It is evident from (29) that the edge effect tends to 
reduce the loss due to the excitation of volume 
plasmons. [ 4 •19] (The temperature factor is neglec
ted for reasons of simplicity.) 

Let us now consider losses due to binary colli
sions. Substituting (25) in (16) and omitting the 
intermediate calculations we have 

nr 4e2(J)o2:tkj_2 sin2 [(kJ.d- nn)/2] ) 
n ~ --- 6((J)-(J)y 

m(J)2d [kj_2- (nn/d) 2)2 (30) 

2e2(J)o"mku , 
+ . o 6((J)-(J)s)· 

w2 [kj_" + ((J)o/ (J))"k!N16] 

It is apparent from (30) that terms describing the 
intersection of the volume excitations with the in
coming electron contain the factor 

2 sin2 [ (kj_cl---: n:rt) /2]---+ 11 ( k"- _ nn ) . 
nd(k"-- nnjd) 2 d->oo d 

(31) 

This factor results from the fact that momentum is 
only conserved approximately in a system of finite 
dimensions (the conservation improves as the 
dimensions of the system get larger). The particle 
passing through the film transfers part of its 
momentum to the volume excitation and part to the 
dividing surface. The situation is reminiscent of 
energy conservation when an interaction is switched 
on and off. 

Let us introduce the quantity 
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1 1 d3k 
11E = v J ( ep- Bp-k) Wp->p' (2n) 3 , (32) 

which defines the mean energy lost by the particle 
passing through the film and consider separately 
the loss to collective volume excitations (ll.E 1), the 
individual volume excitations (ll.E 2), the collective 
surface excitations (ll.E 3) and the individual surface 
excitation (ll.E4). 

Because of the exponential nature of Landau 
damping the transition from collective volume ex
citations to individual excitations is rather sharp. 
Let the vector corresponding to this boundary be 

X [~1-+I~(·Jt__arctg~)J}. 
2 + 4a2 4a 2 12 a 

(38) 

Finally, 

2e2mwo" 1 k11<'> ( w- Ws) d3k 
!1E,::::::; ~-v~ .l wk" [k_1_:i + kll2 (wo/21D)"] (2:t) 3 • 

(39) 

Now let us consider thick films 

wad/ v ":> 1. (40) 

k = km. (33) The relations (34)-(39) now yield 

Then, using (29), (30), and (32) and assuming that 
the imaginary part of the dielectric constant is 
infinitesimally small, for normal incidence we have 

e2w02d [ k v ~~~ x2 cth xdx 
/1£1 ::::::: ~~- ln ____!!':__- sin2 a 

4nv2 Wo 0 (x2 + a 2)2 

fl x2 thxdx J 
-cos2a) (x2+a2)2 ; (34) 

The relation (34) coincides with the corresponding 
expressions obtained by other authors. [ 4, 19] 

The situation is different for the surface excita
tions. It is evident from (22) (cf. [ 13 ]) that the 
damping of the surface plasmons is a smooth func
tion of the wave vector so that the transition from 
collective excitations to single particle excitations 
is a smooth one. In this case the integration over k 
cannot be divided into two parts, one corresponding 
to collective effects and the other to the single par
ticle excitations. Evidently, in computing both 
ll.E 3 and ll.E 4 the integration over k can extend over 
the entire region. However, in both cases there is 
an error of ~ (nw 0/mv2) « 1. Thus the losses to 
excitation of normal plasmons are 

e2w02d { sin2 a a · 
11E3n::::::: ~~-- + sin2 -= 

2nv2 4a2 ( 1 + 4a2) }'2 

X [-1-+ l"Z(.=:t-arctg-1 )]} 
2 + 4a2 4a 2 }'2 a. ' 

while the losses to the excitation of tangential 
plasmons 

*arctg = tan-•. 

(37)* 

2'is e2 wo'is cosec (0,3:r) 

10n v'is m'is ( 1 + m/ M) 'is 

The total losses to volume excitations are thus 

(41) 

e2wo2d 2mM v2 e2wo 
11Ev = /1£1 + 11Ez::::::: 4:1v2 ln (m + M) wo - Sv. (42) 

The first term in ( 42), which does not take account 
of edge effects, coincides with the result obtained 
by Larkin [ 3] by means of a more complicated cal
culation. 

For the surface excitations we have from (41) 

/1£4 1 ( Wo )'is 
-~-- <1 
/1£3 3 mv2 ' 

(43) 

that is to say, the surface losses are due primarily 
to collective excitations. Obviously this statement 
holds only within the limits of the model used in 
Sec. 2; it does not take account of the excitations of 
absorbed states and the other surface states con-
sidered there. 

Now let us consider thin films 

wod/ v~ 1, 

To ~logarithmic accuracy, we have from (34) 

For still thinner fil:ns 

k,,d<i 

the relation in (34) yiell1s 

(44) 

(45) 

(46) 

(47) 
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It is evident from (45) and (47) 2l that the losses to 
volume excitations per unit thickness vanish in a 
very thin film. 

This effect, due to the plasma boundaries, was 
first pointed out by Ritchie[ 4J and by Fainberg and 
Khizhnyak. [ 19] We shall not take account of losses 
at the absorption poles which, as shown in [ 19], are 
independent of film thickness in the linear approxi
mation. Losses per unit thickness described by 
~E2 are also reduced as the thickness is reduced. 
However, this reduction appears at very small 
thicknesses, in which case the model used here no 
longer applies. 

Fdr the losses due to surface excitations using 
(37) and (38) for the case given by (44) we have 

e2 
!J.E3n ~ -- sin2 a, 

2:nd 

The last relations show that the total losses to the 
excitation of normal and tangential surface plas
mons are of the same order. It should be noted, 
however, that the distribution of loss over energy 
is considerably different in the two cases. Speci
fically, as is evident from (22) the losses due to 
normal plasmons in thin films exhibit a resonance 
effect near w0 whereas the losses due to tangential 
plasmons, which are characterized by a continuous 
spectrum, extend from 0 to w 0j/2, smearing out 
the resonance effect near w0• Furthermore, the 
losses per unit thickness due to surface plasmons 
in very thin films (ex « 1) are independent of thick
ness and consequently appear as the basic collec
tive losses. In this respect they are analogous to 
the losses at absorption poles [ 2o] and differ from 
the losses to volume excitations, which are density 
dependent. This dependence arises because the 
losses at frequencies corresponding to zero dielec
tric constant occur only over the path that lies 
within the slab whereas the particle losses at the 
absorption poles and at frequencies of the surface 
plasmons are primarily outside the slab. 

The losses per unit thickness described by ~E4 
and those described by ~E2 are weak functions of 
thickness and, within the limits of applicability of 
the model being used here, are described essen
tially by (41). 

At the present time surface plasmons have not 
been investigated to any great extent, either theor
etically or experimentally. For this reason we wish 

2 )It should be noted that (47) is only qualitative since the 
basic contribution in !J.E, in this case comes from plasmons 
with k"' km for which it is necessary to take account of spatial 
dispersion and the quantum nature of the electrons, both of 
which are neglected in the present section. 

to list the basic features of the losses due to sur
face plasmons: 1) The absence of a density effect. 
2) A more pronounced (compared with volume 
plasmons) angular dependence of the scattering 
probability of incoming electrons [cf. (29)]. 3) A 
linear dependence of energy loss on scattering 
angle, in contrast with the quadratic dependence for 
volume plasmons. This dependence arises as a re
sult of spatial dispersion and is determined by (24) 
in the case of thick films. This dependence changes 
as the thickness is reduced. 4) The width of the 
absorption line (in a collisionless plasma) increa
ses linearly with J. for thick films [ cf. (22)]. 

A number of additional surface-plasmon effects 
arise in case of oblique incidence of the fast parti
cle; these also have certain characteristic features, 
but will not be discussed here. 

4. FREQUENCY OF THE PLASMA OSCILLATIONS 
AS A FUNCTION OF THICKNESS IN THIN 
FILMS 

We have seen above that electrons passing 
through a plasma lose part of their energy to the 
excitation of volume plasmons; this process is 
characterized by a dispersion relation of the form 
E(k, w) = 0, or 

(49) 

where v is the mean square velocity of the plasma 
electrons. In films kmin ~ 11" I d and ( 49) yields 

(50) 

The dependence of plasma oscillation frequency 
on film thickness, which appears when d < 50 A, 
has been pointed out by Ichikawa. [t4] For Al, for 
example, the contribution due to the second term 
in (5) amounts to ~ (38/d2 ) eV where dis given in 
Angstroms. The experimental data given in [ 14], 

however, indicate that the thickness effect appears 
much earlier. For example, for Al (w 0 ~ 15 eV) with 
d = 1oo A. 

!J.w(d) = Wmin(d)- Wo ~ 0.1 eV, (51) 

which clearly disagrees with (49). This rather 
strong dependence of plasma frequency on thick
ness can be attributed to the quantum nature of 
electrons in thin films, specifically to the discrete
ness of the electron momentum. We shall see be
low that this discreteness is much more important 
than the discreteness of the plasma wave vector. 

The semiclassical approximation used in the 
preceding sections is not Imitable for solving the 
problem at hand. For this reason we return to 
(10), writing this relation for a plasmon wave func
tion cp(x) 
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~cp(x)-~ II(x, x')cp(x')d4x'=0. (52) 

To find II(x, x') we must at least know the free 
Green's functions of the plasma electron compon
ents. The determination of these functions in actual 
crystals is an extremely complicated problem. 
Since we are only interested in determining the 
effect of the discreteness of the electron momenta 
on the plasma spectrum we shall consider a much 
simpler model. Specifically, we regard the plasma 
slab as a one-dimensional potential well with im
penetrable walls. We neglect surface electrons, 
whose effect on the volume plasmon spectrum is 
insignificant, in view of their relative smallness. 

In the model we have chosen the wave functions 
of the electrons are ~sin p3x3 where p3 = vrr /d, 
v = 1, 2, ... and the free Green's function for the 
electrons; consequently the polarization operator 
can be determined easily. Furthermore, substitut
ing the following expansion in (52) 

cp(x) = ~ cp(k11, k3)cos k 3x3 ei(k11x--Olt), (53) 
kllh' 

we obtain the dispersion relation for the volume 
plasmons: 

k2 + ~ ~ C !!J!.J_ (ep- ep-k) (n"- np-k) (k) 
d LJ ~ (2n)2 w2- (ep- ep-k)2 cp 

pa 

= e2 ~ 1 .!!i!J_ (e11 - Bp-k) (np- np-k) (k 12 _ k I) 
d ..:..J.\(2n)2 w2-(ep-Bp-k)2 cp II Pa a . 

Pa (54) 

The summation is taken over both positive and 
negative values of p 3• 

When d- oo the right side of (54) vanishes and 
we obtain the usual dispersion relation for volume 
plasmons in an infinite plasma. For finite d we re
gard the right side as a perturbation, noting that 
all of the terms are of equal value. The p3 = k3 

term contains a factor ~ (pFdr1 (PF is the Fermi 
momentum); the remaining terms contain this fac
tor plus an additional factor due to the fact that the 
plasmon "shape" is not harmonic. It is evident 
that the latter is also ~ (pFd)-1• 

Thus, limiting ourselves to terms containing the 
first order ratio of the electron Fermi wavelength 
to the film thickness, we have 

k2 + !!__ "' I .!!J!J_ (ep- Ep-k) (np- np-k) = 0 (55) 
d . LJ .\ (2n)2 w2 - (ep- Ep-k)2 · 

Pa*k' 

The basic difference between the dispersion relation 
in (55) and the usual relation for an infinite plasma 
(aside from the fact that the summation becomes 
an integration) is the absence of terms with 
p3 = 0, k3• This is a direct consequence of the 
application of the uncertainty relation to the elec
tron momentum and coordinate, which yields 

Pmin"" l't I d, (56) 

and this is presumably a universal result not as
sociated with the choice of the electron wave func
tions in the film. (A p3 = k3 term would correspond 
to electron transitions from a p3 = 0 state to a 
p3 = k3 state and vice versa; by virtue of (56) these 
must be eliminated as must the p 3 = 0 term.) 

Solving Eq. (55) in the usual approximation 
(k2v2 « w 2 ) we have 

w2 ~ w 02 [ 1 + 4~ ( 9: ) 
1

/
3 J + a2k2 , (57) 

where a 2 ~ v2, and n is the plasma electron density. 
If the film is not too thin the dependence of fre
quency on thickness is thus given essentially by 

~w (d) ,..., 1 ( 9n ) 1
/ 3 

~--sa-;;. 
(58) 

For Al with d = 100 A (58) gives ~ 1/150 in agree
ment with (51). Thus tne basic dependence of the 
plasmon spectrum on thickness can be explained 
completely by the fact that the electron momenta 
must assume discrete values. 

An analogous dependence of the energy spectrum 
on thickness is found for surface plasmons. How
ever, this dependence is completely masked by the 
stronger dependence on the shape of the plasma 
surface and has not been observed experimen
tally. [a, 9] 

Our dispersion relation (57) is in good agree
ment with experiment and serves to verify the 
collective nature of the characteristic losses in 
thin films since the indicated dependence of loss 
energy on thickness cannot be explained by inter
zone transitions of individual electrons. The latter 
effect, due to the broadening of the forbidden zones, 
also connected with (56), is given by 

~E,..., n2 I md2, (59) 

which is small since it is quadratic in 1/d. 

5. SURFACE PLASMON CHARACTERISTICS IN A 
PLASMA WITH DIFFUSE BOUNDARIES 

Up to this point we have assumed that the plasma 
boundary is sharp. Actually, however, the boundary 
between two media will always be diffuse to some 
extent. The diffuseness of this boundary is espec
ially important for surface plasmons, because they 
are localized near the boundary. The important 
point is that when one assumes a sharp boundary, 
for example, a vacuum-plasma boundary, the elec
tromagnetic field of a surface plasmon with wave 
vector parallel to the separation surface k 11 and 
frequency ~w 0/-/2 (w 0 is the Langmuir frequency) 
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is damped exponentially on going away from the 
boundary, falling off as ~exp(-klllx3 j). In other 
words, the surface plasmon is localized near the 
boundary (within a layer of thickness ~ ki/). Now 
let us consider the case of a diffuse boundary 
characterized by the dimension L. If L is such 
that k11 L » 1 it is clear from general considera
tions that the surface plasmon must either vanish 
altogether or must be considerably different from 
that which is obtained in the case of a plasma with 
a sharp boundary. Furthermore, since the surface 
plasmon is characterized by E(w) = -1, in a diffuse 
vacuum-plasma transition, for a given frequency 
there always exists a spatial region in which 
E(w, x3) = 0, in which a volume plasmon can exist. 
The latter circumstance means that in this region 
part of the energy of the surface plasmon is con
verted into energy of the volume plasmon; this is 
due to the same specific damping mechanism of 
the surface plasmon in a plasma with smeared-out 
boundaries. This damping is stronger the larger 
the region in which the volume plasmons exist, i.e., 
the smoother the transition region. 

Proceeding now to a quantitative discussion, we 
confine ourselves to a semi-infinite plasma with a 
linear electron density variation 

( 0 
n (xa) = ~ n0 + (N- no) (1- .T3 / L) 

xa<O 
O<xs<L. (60) 

t nn .r3 >L 
The dielectric constant is 

e(w, xa) = 1- wo2 (xa) I w(w + iv), (61) 

wo2 (xa) = 4nn (xa) e2 I m, ( 62) 

and in the transition region we can write 

e(w,xa) =a-xalxo, 

a= 1 _ 4nNe2 

mw(w + iv)' 
Xo = w(w + iv)m L. 

4:rr (no- IV) e2 

(63) 

(64) 

To find the energy spectrum we start with the 
Laplace equation for the scalar potential using the 
appropriate boundary conditions. 3l The solution is 
written in the form 

cp (x, t) = ei(k II x-wt) cp (xa). (65) 

Introducing the new variable 

~ = xoe(w, xa) = axo- Xa, (66) 

we obtain in the transition region an equation 

3)In the interest of simplicity we neglect spatial dispersion, 
although it could actually become important, especially when 
IJ .... o. 

82cp(~) +_£ 8cp(~)_k2 ('")=0 (67) 
a~2 ~ a~ u cp "' , 

the solution of which is 

cp(~) = AKo(ku~) + Blo(ku~), (68) 

where K0 and I0 are Bessel functions of imaginary 
argument. 

A field outside the transition region which van
ishes at ± oo, is defined by a potential 

cp (xs) = {lnx• 
ce-k nxa 

(69) 

By joining the solutions at the points x3 = 0 and L 
we find the constants of integration and the disper
sion relation. This relation is 

e(xa = O)/i(6)+Io(6) 
e(xa = O)K1(6)-Ko(6) 

/1(6')-/0 (6') 

K1(6') + Ko(6') ' 

&' = (axo- L)kll· 

Let us consider two particular cases. 
1. N = 0. In this case we have from (70) 

w~ wp~) ( 1-ink11 {4(~\ -i~-). 
y2 \ 8X3} S(ID, .l:a )=0 2 

(70) 

(71) 

(72) 

When k11 L » 1 (70) does not have a solution and this 
indicates the disappearance of the surface plas
mons, as expected. 

The most interesting feature of the dispersion 
relation (72) is the appearance of damping even 
when v ~ 0, i.e., in the absence of dissipation. 
This damping, as indicated above, is due to the 
conversion of the energy of the surface plasmon 
into the energy of the volume plasmon in the region 
E(w, x3) = 0. We neglect this damping temporarily. 
Then the width of the resonance line ~w = v and 
the width of the region in which E(w, x3) = 0 is 
~x3 = vL/w. However, the electromagnetic field 
in this region Ex3 (t) ~ k11 L/2t ~ k11w /v. When 
v ~ 0, ~x3 ~ 0 but Ex3 ~ oo. Hence the heat gen
erated primarily in the region x 3 = L/2 is finite 
and given by Q ~1rwk11L/4 regardless of v. It is 
important to emphasize that in the limit v ~ 0 this 
heat is only generated in the region x3 = L/2 i.e., 
in the region in which the volume plasmon exists. 
(Actually, because of the specific damping mechan
ism this region expands to ~x3 ~ 1rk11 L2/8.) 

The damping of the surface plasmon due to con
version is of the form 

V = Q I 2W ~ 1lsnwkuL, (73) 

which coincides with (72) and verifies the statement 
above. The indicated damping mechanism is of 
interest in that it can be used for generating energy 
at high density in a small volume through excita-
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tion of surface plasmons by whatever method is 
feasible for example, incident electrons. 

2. N » n0• In this case (70) has the solution 

( + .) ~ {1/ 2 w,p'·(L)(1 +NkuLf2n0), NkuLfno<1 
(J) W lV ~ • 

1/ 2 wp2 (0)(1 +0(1fk 11 L)), k 11 L>-1 

(74) 
There is no specific damping in this case because 
of the absence of a region E(w, x3) = 0 for these 
frequencies. The entire diffuseness effect reduces 
to deformation of the dispersion curve of the sur
face plasmons. 

The surface-plasmon features considered here 
are not important in metals, (since L is small) but 
can be important in gas plasmas or semiconductor 
plasmas, particularly when there are pn junctions 
in the latter. 
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