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Recently Kagan [ 1, 2] and Oskot · skil [ 3] have suggested methods for determining the frequency 
distribution function for crystals from neutron scattering experiments. The idea behind these 
methods is to find conditions in which coherent scattering is suppressed. Though, in theory, 
such conditions have been shown to exist, it is pointed out here that they would be very diffi
cult to attain experimentally. It is suggested that a fair idea of the frequency distribution 
function of a solid can be obtained easily by studying the energy distribution of neutrons 
inelastically scattered from a polycrystalline sample. 

IN some recent papers [ 1- 3] different methods have 
been suggested for determining the phonon fre
quency distribution function for crystals from 
neutron scattering experiments. The main idea 
behind these methods is to suppress coherent neu
tron scattering and observe only the incoherently 
scattered neutrons. Kagan[ 2J, for example, sug
gests the study of the energy spectrum of those 
inelastically scattering neutrons (through one
phonon exchange) for which the change in the neu
tron wave vector K (K = k 1 - k 2, k 1 being the wave 
vector of incident neutrons and k2 that of the scat
tered neutrons) is equal to 2rr times some recipro
cal lattice vector T of the crystal. As has been 
pointed out by Kagan himself, this method is not 
very practicable from the experimental point of view. 

Besides the above method, Kagan [ 2] has sugges
ted two other alternatives, (1) study of inelastically 
scattered neutrons at very small angles or (2) the 
measurement of the differential scattering cross 
section 82u /8 E28 n for a few fixed directions of k2• 

According to Kagan the last method is the simplest 
but it is the least accurate. 

Oskot·skil [ 3] has criticized Kagan's approach 
and has suggested another method. According to 
him one should study inelastically scattered neu
trons (through one-phonon exchange) in a direction 
(or close to the direction) of Bragg reflection. 
Oskot · ski! [ 3] shows that if the velocity of incident 
neutrons is larger than the maximum velocity of 
sound in the crystal Cmax• then no coherent scat
tering with energy gain by neutrons is possible. It 
is not difficult to see that Oskot · ski!' s suggestion 
is also not practicable. For his suggestion to work, 
the incident neutrons must have an energy 

E 1 > 1/ 2 m 0cinax• where m 0 is the neutron mass. 
This energy will range from 400 k to 10,000 k 
(k is the Boltzmann constant) depending upon the 
value of cmax (cmax Rl (2.5- 13) x 105 em/sec). 
A crystal with low Cmax will also have a low Debye 
temperature e' so that the incident-neutron energy 
required for such an experiment would be many 
times ke (see the table). This implies that even for 
crystals at room temperature the contribution 
from two- and higher-order phonon processes will 
be large and the cross section for scattering with 
energy gain will be negligible[ 4J. Decreasing the 
crystal temperature would also not improve 
matters. 

I -5, 2 
Metal 

Cmax x 10 f =moe max/ 9 £/9 
em/sec I 2k 

Be 12.89 10290 1000 10 
Al 6.40 2483 398 6 
Mg 4,60 1280 305 4 
Fe 5.93 2128 420 5 
Pb 2.40 348,5 88 4 

If one were to consider the neutrons scattered 
with energy loss, then the minimum incident energy 
required to avoid all coherent scattering would be 
even higher [ 3] • 

Another point which one has to bear in mind is 
that for all metals, except vanadium, the bound 
incoherent scattering cross section per atom s is 
very much smaller than S, the bound coherent 
scattering cross section per atom. This implies 
that only a small fraction of neutrons scattered by 
a crystal are incoherently scattered. 

In spite of these handicaps, one of the above 
methods will have to be used to study the exact 
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nature of the frequency distribution function close 
to its singularities and extremum points. It would 
appear, however, that, to within a reasonable de
gree of accuracy (in present-day neutron-scatter
ing experiments it is difficult to attain better than 
a few per cent accuracy), the best method for de
termining the general shape of the frequency dis
tribution function of a solid would be to study the 
energy distribution da /dE2 of neutrons inelasti
cally scattered by a polycrystalline sample. The 
incident-neutron energy should be nearly 500 k or 
higher, which (except in the case of lead) is of the 
order of k® <% k® in case of beryllium). It has 
been shown in case of beryllium [ 4• 5] (but this will 
be true generally) that at these energies the num
ber of contributing reciprocal-lattice vectors is so 
large that the energy distribution of the coherently 
scattered neutrons is almost the same as that of 
incoherently scattered ones. Thus by studying the 
neutrons inelastically scattered from a polycrys
talline sample, it should be possible to deduce its 
frequency distribution function. 

Marshall and Stuart [ 6] have given the following 
expression for one-phonon coherent differential 
scattering cross section for neutron scattering 
from a polycrystalline sample 

azacoh _NS1/&n[(2 _2 ~G sinnK 
8E28Q. - 4n f Et 2M e w Li (n) --;;K 

n=O 

where N is the total number of atoms in the crys
tal, S is the bound coherent scattering cross sec
tion per atom, M is the mass of the scatterer atom, 
K = k1 - k2 is the difference of the incident neu
tron wave vector k1 and the final neutron wave vec
tor k2, f is the phonon wave vector, and w is the 
corresponding angular frequency. The frequency 
distribution function is represented by g(w) whereas 
G(n) represents the number of atoms with position 
vector of magnitude n. The Debye-Waller factor is 
e - 2W and the crystal temperature is T. (Similar 
expression had been obtained earlier by Kothari 
and Singwi [ 7J , but they omitted the factor 
sin nK/nK.) 

The major contribution to the above expression 
comes from the term with n = 0, which is identical 
with the expression for the incoherent scattering 
cross section provided one replaces S by s (the bound 
incoherent scattering cross section per atom). It is 
also seen that the correction term (i.e., the sum of 
all terms with n 2: 1) is not strongly angle-depen
dent. Marshall and Stuart[ 6J have shown by 
numerically evaluating the correction term that the 
ratio of the total correction term to the total scat
tering cross section in the incoherent approxima
tion (i.e., taking the expression for incoherent 
scattering and replacing s by (S + s)) seldom ex
ceeds 2% or so, particularly in the thermal energy 
region. This small correction leads one to expect 
a reasonably accurate determination of the fre
quency distribution function by the method dis
cussed above. 

The use of "isotopic alloys" in cases where one 
of the isotopes of the element under consideration 
has a negative scattering length has also been sug
gested[B]. For example, nickel containing 45.9% 
of Ni 62 would exhibit no coherent scattering, nor 
would an alloy of 26.3% of Li 6 and 73.7% of Li 7• 
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