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A general formula for multiquantum absorption by a two-level system is derived. Multiquantum 
absorption of the order of k = 2, 3, 4, 5 ( k is the number of absorbed photons) has been ob­
served experimentally in the diphenyl picryl hydrazil spin system. The measured dependence of 
the transition probabilities on the intensity and orientation of the transition-inducing field are 
in good agreement with results of calculations. 

1. INTRODUCTION 

MuLTIQUANTUM transitions, which consist in 
simultaneous absorption of two or more photons 
of equal energy by a particle, were observed many 
times in the radio-frequency band (see the bibli­
ography in the book of Al 'tshuler and Kozyrev L1J, 
and also [2- 7]) and in the optical band (see, for 
example, [BJ ). The experiments dealt essentially 
with transitions in which an important role was 
played by the intermediate levels, and in most 
cases the distance between the levels was close to 
the magnitude of the absorbed quanta, so that the 
effect was appreciable. Less frequently observed 
were multiquantum transitions without the partici­
pation of intermediate levels (absorption in sodium 
vapor under optical pumping is interpreted in this 
manner in [5•6] ). 

In this paper we report the results of an ex­
periment aimed at observing multiquantum transi­
tions (up to fifth order inclusive) between two 
Zeeman levels of the free radical diphenyl picryl 
hydrazyl, with the observed photons having equal 
energy. The theoretical part of the paper contains 
a derivation of a general formula for the probabil­
ity of absorption of photons of equal energy by a 
two-level system, with the interaction between 
particles taken into account in the derivation. The 
experimental results are compared with the theory. 

2. THEORY 

The probability of a process with absorption of 
k photons and with transition of a particle from 
the first level to the second is expressed by the 
formula 

Wi--'>2 = R-1 ~exp(- Eal e) ~ l<cfl, n- kIT I Ca, n)l 2, 

(1) 

n-number of photons in the initial state, and the 
operator T can be represented in the form 
(see [9]): 

T = exp(- i:Je0t) (I+ ~ lj(m)), 
m=i 

tm t, 

lj(m) = (-i)m ~ dtmV'(tm) ~ dtm:::.!V'(tm-d· .. ~ dt1V'(t1), 
0 0 0 

V'(t) = oxp(i:Je0t) V(t)exp(- i:Jeot), 

V = ~~ (B;e-irot + B;+eirot)_. (2) 

The term JC 0 consists of the unperturbed Hamil­
tonian and the secular part of the operator W for 
the interaction between particles, both divided by 
n; v is the interaction between the particles and 
the external field. The states I ca) and I Cf3 ) 
are superpositions of states corresponding to the 
unperturbed values of the energy 

Ea = N1aa1 + N2aa2, Er. = (N!a -i)a1 +(N2a + i)a2. 

Nw, a 1, and N2a, a 2 are the numbers of the 
particles and the particle energies in the first and 
second levels; I ca) and I Cf3) are eigenvectors 
of the secular part of the operator W, and the 
corresponding eigenvalues are denoted by W ( ca) 
and W(cf3); ~a in formula (1) denotes summation 
over all N ta and N2a, connected by the relation 
Nw + Nw = N ( N-total number of particles); 
®-product of the Boltzmann constant by the ab­
solute temperature; R-normalization factor: 

When perturbation theory is applicable, we can 
substitute u(k) in (1) in lieu of T. Inasmuch as 
w 0 ~ ku;, it is sufficient to retain in the expres­
sion for the matrix element only the resonant part 
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t 

<c~ I U<"l I c~> = <c~ I Mn I c~> ~ dt' 
0 

Xexp{i[ro6 - kro- W(c~)+ W(c~)]t'}, 

quanta, is equal to N2Ni 1Gk( T) (N1 and N2-
equilibrium values of the populations). The ob­

(3) served effect is therefore determined by the ex-

where Mk-time-independent operator. In for­
mula (3) and in those that follow we shall not write 
out the photon indices, and we assume that Bi is 
expressed in terms of the classical field value, 
since the number of photons n is assumed large. 
The use of the quantized field is convenient during 
the first stage of the calculation, since it permits 
an unambiguous quantum treatment of the effect 
and, furthermore, makes it possible to discard 
immediately the terms with photon-production 
operators. 

With the aid of (3) we obtain the following value 
of the transition probability per unit time: 

aw1~2lat = 2:rtG,(O)g(roo-kro), 

g(roo- kro) = [2:rtG1.(0)]-1 
00 

x) dt'exp{i(roo-kro)-r}G,(t'), 
-oo 

~ 

where Pa and Pf3 are projection operators. 

(4) 

(5) 

(6) 

This expression can be obtained either by 
representing the square of the modulus of the in­
tegral in formula (3) in the form of a a-function 
multiplied by 21ft, or else by directly differentiat­
ing it with respect to the time. In the latter case 
the limits of the integral (5) will be -t and t, and 
the use of the o-function formalism is equivalent 
to neglecting the small values of the integral (when 
t is large) from -"'- to -t and from t to 00 , The 
function Gk ( T) is a generalization of the auto­
correlation function known from the theory of 
single-photon transitions (see, for example, L1oJ ), 
and can be used to obtain the moments of the func­
tion g ( w0 - kw ): 

in dnGk ( t') I 
(roo-kro)n= G,(O) d-rn T=O· 

(7) 

It is not the task of the present paper to inves­
tigate the line shape. We note only that with the 
aid of the obtained general formulas we can show 
that if we exclude from consideration the possibil­
ity of transferring a quantum from one particle to 
another, and if we can assume the lines to be well 
resolved, then the function g will be the same for 
all values of k. 

It can be shown that when the total number of 
photons is large, the function Gk_ ( T), correspond­
ing to the transition 2 - 1 with emission of k 

pression 

awl-+ 2 I at - aw2-+ 1 I at = 2:rt 

(8) 

We proceed to calculate the function Gk ( 0 ). 
We shall consider processes in which all k 
quanta are absorbed by a single particle. In this 
case there remains in the operator Nk only a 
single sum of the products of the operators Bi, 
taken over the numbers of the particles. The value 
of Gk ( 0 ), which is the product of two sums, again 
reduces to a single sum, since each operator 
which transfers the particle from state 1 into 
state 2 should be multiplied by an operator which 
returns the same particle to state 1. All the in­
teraction operators Bi are assumed identical (we 
shall henceforth omit the index i), and the calcula­
tion of the trace leads only to the appearance of 
the Boltzmann factor N1 (for more details on the 
calculation of traces see [11] ). 

Thus, the calculation of Gk ( 0) reduces in 
practice to the solution of a single-particle prob­
lem. (This remark remains in force also for 
arbitrary processes with transition to another 
level and with a frequency relation ~sksws ::::J w0.) 

The function Gk ( 0) can be represented in the 
form 

G,(O) = Nlro2(1-kJ I ~ fqDq 12' (9) 
q 

Dq = (B2!)q+1(B12)q(Bu-B22)"-2q-l. (10) 

The summation over q is from zero to the integer 
part of the number (k - 1 )/2, while fq are dimen­
sionless coefficients that are sums of the expres­
sions 

corresponding to the combinations of the matrix 
elements that lead to the product (10); bp-coeffi­
cient of iwtp in the exponential of the time factor 
of the p-th integral in expression (2). In the cal­
culation of fq we can assume that kw = w0• 

We use a graphic representation of the products 
of matrix elements (see, for example, the diagram 
of Fig. 1a: the points on the lower horizontal line 
correspond to state 1, the points on the upper line 
to state 2; the time is directed from left to right; 
the diagram 1a corresponds to the product 
B21B12B22B21B11 ). In formula (10) the diagonal 
elements enter only in the form of the difference 
B 11 - B12 (this can be verified, for example, with 
the aid of the equations for the density matrix), so 
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FIG. 1. Graphic representation of the products of matrix 
elements. 

that it is sufficient to consider only diagrams with 
horizontal segments on the lower level only, and 
also the sawtooth diagram 1e. From the form of 
the diagram we determine immediately the coeffi­
cient (11). It can be shown that bp = - 1 for the hori­
zontal segment bp = k - 1 for the rising segment, 
and bp = -k - 1 for the descending segment. 

With the aid of the diagram 1b we obtain 

fo= (-1) 11- 1 / (k-1)! (12) 

For the case q = 1 (Fig. 1c) we obtain the coeffi­
cients 
(- 1) h-1-- 1 (- 1) h-1 - 2 
(k-1)! k-1' (k-1)! k-2 , ... , 

(-1)k-1 -(k-2)_ 
(k- 1)! --k- {k-=2) . 

Consequently 
k-~ 

!t = (-1) ~ _P_1 __ 
(k- 1)! p,=1 k- Pt 

(13) 

To calculate f2 we must consider diagrams 
with two teeth, which can be obtained from the 
diagrams 1c by inserting in each diagram, in all 
possible manners, a second tooth on the right of 
the first. For example, from the first diagram 1c 
we obtain the diagrams 1e, which correspond to the 
coefficients 

- 3 (- 1) h-1 - 1 - 4 (-1)1<-1 -1 

(k-1)! k-1 

(-1)1<-1 -1 

k-3 (k-1)! k-1 lc-4 , ... , 

-(k-2) 
------
(k-1)! k-1 k-(k-2) 

etc. Continuing this reasoning, we can readily de­
rive a general formula for q > 0: 

(- 1) k-j-q-1 k-2 1<-2 

tq= L L ... 
(k- 1)! p,=! p,=p,+2 

1<-2 L PtP2· .. p,J 
... _ _ . (k- Pt) (k --p;)~-:-_(k-=- pqf 

l'q-Pq_1+2 
(14) 

Expression (8)-(10), (12), and (14) yield the gen­
eral solution of the problem. 

In the case of dipole interaction, putting 
B = - (%)yO'· H1 and introducing the angle J- be­
tween the directions of the constant and alternating 
magnetic field, we obtain 

F 1 = sin2 'fr, F2 = sin2 {} cos2 'fr, 

Fa= sin2 'fr(cos2 {}- 1/s sin2 'fr) 2, 

F4 = sin2 {} cos2 'fr(cos2 {}- 1/a sin2 'fr) 2, 

(15) 

F5 = sin2 {} ( cos4 {}- 29/4s sin2 {} cos2 {} + 3/12s sin4 'fr) 2 116) 

etc. 

3. EXPERIMENT 

In the experiment we used an ordinary mag­
netic-resonance spectroscope assembled in ac­
cordance with the Rollin scheme, using magnetic 
modulation and synchronous detection at 100 kcs, 
with the derivative of the absorption line recorded 
automatically. A rotating magnet made it possible 
to vary the angle J-. The spectroscope generator 
supplied a voltage up to 100 V to the resonant 
circuit with the sample. 

Figure 2 shows samples of recordings obtained 
at 12.8 Mcs with different values of H1• It is seen 
on Fig. 2 that absorption peaks corresponding to 
increasingly higher values of k appear with in­
creasing Ht. 

The dependence of the amplitudes Sk of these 
peaks (in arbitrary units) on H1 for J- = 30° is 
shown in a logarithmic scale in Fig. 3. The 
straight lines on Fig. 3 have been drawn with a 
slope corresponding to a dependence in the form 
H1k-t; this dependence is obtained from (15) if 
account is taken of the fact that the amplitude of 

FIG. 2. Derivative of the absorption line at different values 
of the field intensity H, of the field inducing the transitions. 
The values of H, (in Oe) are indicated on the curve: w/2rr = 

12.8 Mcs, 'it= 45°. 
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FIG. 3. Dependence of the amplitudes of the absorption 
peaks Sk on H,, the straight lines are drawn with slope H~ k -•. 

FIG. 4. Solid lines - plots of the functions F k; the experi­
mental points are normalized independently for each value of k. 

the observed signal is proportional to Gk ( 0 )/H1• 

The deviation of the experimental data from this 
law at large H1 is explained by the effect of 
saturation and superposition of peaks, correspond­
ing to the neighboring values of k. 

In Fig. 4 the continuous lines are plots of the 
functions Fk ( J) ( 16); the experimental points 
have been normalized for each value of k inde­
pendently. We note that the ,9-dependence of the 
individual terms in ( 16) can be interpreted from 

the point of view of angular-momentum conserva­
tion, if we recognize that the component of H1 

parallel to H0 does not have a momentum relative 
to the quantization axis, while the photons of the 
perpendicular component of H1 can change the 
momentum of the spin system by ±n l5, 12]. 

The good agreement between the experimental 
data and formulas ( 15) and ( 16) demonstrates the 
correctness of treating the supplementary absorp­
tion peaks as being the result of multiquantum 
transitions. 
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