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In the range 1.5 to 4.2° K the value ae = ( 3.2 ± 0.3) x 10-9 T /deg is obtained for the electronic 
component of the thermal expansion coefficient of iron. The Griineisen constant in this tem­
perature range is found to be close to its high-temperature value. It is therefore concluded 
that the Debye temperature and electron state density in iron vary in the same way with iden­
tical relative changes of volume. 

IMPORTANT information regarding the proper­
ties of conduction electrons has been obtained by 
measuring the specific heats of metals at low tem­
peratures. It is well-known that the heat capacity 
of a nonferromagnetic metal can be divided into 
electronic and phonon terms, represented in the 
equation 

C = yT + DT3. ( 1) 

In the case of ferromagnetic metals a term propor­
tional to T312 is added to take account of spin 
waves. The coefficient of the electronic heat 
capacity, y = %n2k2N( E 0), determines the density 
N of electron states at the Fermi surface. The 
quantity y plays a large part in the study of all 
electronic properties of metals and has been 
measured calorimetrically at low temperatures 
for a large number of metals. 

The thermal expansion coefficient of ferromag­
netic metals, like the heat capacity, depends on 
electronic, phonon, and spin mechanisms; the vol­
ume thermal expansion coefficient is 

~ = AT + BT3 + ET'''· (2) 

The coefficient A of the electronic term furnishes 
new information regarding the electron spectrum 
of metals; its pressure dependence will be dis­
cussed here in some detail. Until very recently 
experimental data for this quantity were lacking 
because it is extremely difficult to measure very 
small thermal expansions at liquid helium temper­
atures. The components of {3 can be evaluated by 
using the relation between C and {3 given in 
Grlineisen's formula 
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(3) 

where r is the Grlineisen constant, KT is the co­
efficient of isothermal compressibility, and Vm 
is the molar volume. Taking the known heat 
capacity of iron, [ 1] 

c = (11.7 + 0.1) . 10-9T + 46.44(T I 477)3 

+ (2 + 1) · 10-5T'" cal/mol-deg, 

and using the values r ~ 2, KT = 5. 95 X 10-13 

cm2/dyne, and Vm = 7.1 cm3/mole, we obtain 

~ ~ 10-9T + 1Q-11T3 + 1Q-10T'f, deg-1• 

In the first quantitative dilatometric investiga­
tions at liquid helium temperatures, the volume 
jump of tin and lead was measured for the super­
conducting transition in a magnetic field, as well 
as the jump of the thermal expansion coefficient 
of these metals upon passing through the critical 
temperature. [ 2•3] In very recent years dilatometric 
techniques have been greatly developed and the 
electronic component of the thermal expansion 
coefficient has been determined for several 
metals. [ 4, 5] 

The present article presents results obtained 
from an investigation of the thermal expansion of 
iron at liquid helium temperatures using an im­
proved version of an earlier technique. [ 3] As 
previously, the main portion of the apparatus is 
a bimetallic strip of iron and lead a few meters 
long which is coiled for the sake of compactness 
( 60 turns, 50 mm in diameter). This helix is 
very sensitive to relative changes in the length of 
the constituent metals. The iron is of better than 
99.9o/c purity; the purity of the lead is 99.99%. The 
lower end of the helix is rigidly fixed, while the 
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upper end is suspended permitting free rotation 
about the helical axis as a result of temperature 
or pressure changes. The angle of rotation An is 
indicated by a mirror maintained at room temper­
ature in the upper part of the apparatus, and is 
amplified by a thermal amplifier and galvanometer. 
The bimetallic helix is enclosed in a sealed case 
which is filled with helium gas to a pressure of 
~ 5 mm Hg and is surrounded by liquid helium. 

The described apparatus permitted measure­
ments of the torsion angle of the helix both for 
temperature changes at constant pressure 
(thermal expansion) and for pressure changes at 
constant temperature ( isothermal compressibility). 
The sensitivity of the apparatus had previously 
been computed from the dimensions of the helix, 
utilizing the known elastic moduli of iron and 
lead. [s, 6] Calibration measurements at room 
temperature, for which the thermal expansion 
coefficients a and the compressibilities K of the 
metals are known, yielded the sensitivities 

where Aa and AK are the differences between the 
thermal expansion coefficients and the isothermal 
compressibilities of the metals, and An is the 
scale deflection. The expansion coefficients of the 
metals have been studied more thoroughly than 
their compressibilities. In the present case we 
therefore used the sensitivity derived by calibra­
ting the instrument for thermal expansion: ST 
= ( 1.5 ± 0.1) X 10-9. 

In this eXperiment we measured An, charac­
terizing the relative change Lll/l of the sample's 
length accompanying a temperature change; the 
derivative with respect to T gives the thermal 
expansion coefficient. The use of a bimetallic 
helix comprises a differential method; the meas­
urements give the difference between the linear 
thermal expansions of the two metals. We there­
fore determined the difference between the linear 
thermal expansion coefficients of lead apb and 
iron aFe: 

Upb- UFe = {UPbe_ UFn + {Upbl- UFe1)- UFe 8 , (4) 

where the indices e, l, and s distinguish the elec­
tronic, lattice, and spin components of a. 

The measurements were performed in the 
range 1.5-4.2°K, where there is a very small 
concentration of normal electrons in lead. Below 
the critical temperature T c of a superconductor 
the number of normal electrons decreases expo­
nentially with temperature and at 0.5 Tc is only 
1/10 of the concentration in the normal state. 
Therefore in the temperature region of present 

interest electrons will make practically no con­
tribution to the thermal expansion of lead. This 
is the main reason for using a superconductor 
having a relatively high value of T c as one of the 
metals of the bimetallic helix. In accordance with 
(2) and ( 1) the difference between the linear ther­
mal expansion coefficients is given by 

Upb- UFe = -aFeT + ( bpb - bFe) T3 - eFeT%. (5) 
I 

As already noted, at liquid helium temperatures 
the spin component of the expansion coefficient 
has the very small value ~ 10-10, which is consid­
erably below the sensitivity of the instrument. 
The lattice component of the thermal expansion 
coefficient of iron is even smaller, being approxi­
mately 1/100 of the lattice component for lead, 
because the Debye temperature of iron is almost 
five times as large as that of lead. For these 
experiments we therefore have 

(6) 

In Fig. 1 the measurements of the temperature 
dependence of Al/l are given as the number n of 
scale divisions, with three experimental runs rep­
resented by different symbols. The curve in Fig. 
2, derived by differentiating the smooth curve in 
Fig. 1, with respect to temperature, represents 
the temperature dependence of the difference be­
tween the thermal expansion coefficients of lead 
and iron in.the region 1.5-4.2° K. Since, when 
treating experimental data on the temperature de­
pendence of the heat capacity of a metal, the small 
electronic component is isolated by using the co­
ordinates C/T and T 2, we follow this procedure in 
the present case, but only for the smooth curve in 
Fig. 2. 

The same data represented in the coordinates 
(a Pb - a Fe) /T and T 2 ( Fig. 3) yield a straight 
line, from which the value of a Fe [the coefficient 
of T in (6) ] is obtained as the intercept of the 
extrapolated line on the ordinate axis. In this way 
we obtain for the electronic component of the 

n 

.. 

FIG. 1. Relative change of length of iron-lead strip (in 
scale divisions) vs. temperature. Values obtained in different 
runs are denoted by different symbols. 
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FIG. 2. Difference between the linear thermal expansion 
coefficients of lead and iron versus temperature. 

thermal expansion coefficient of iron: 

UFee = (3.2 + 0.3) ·10-9T deg -I. 

The same value is derived from the fact that the 
curves in Figs. 2 and 3 cross the temperature 
axis at 1.62°K, where, according to (6), O:FeT 
= bpb T3 ; thus at 1. 62° K the electronic component 
for iron equals the phonon component of the 
thermal expansion coefficient for lead. 

According to the data in [ 7 ,a] the linear thermal 
expansion coefficient of superconducting lead is 

apbl = (1.3 ± 0.1)·10-9T3 deg-1. 

Therefore at 1.62° K we have 

whence 

aFe e IT = a Fe = 3.4 · 10-9 deg-2. 

White[SJ has obtained a:}ce = ( 2.9 ± 0.2) 
x 10-9 T for the electronic component of the 
thermal expansion coefficient of iron. The values 
of this coefficient obtained by different investiga­
tors using different -techniques are in good agree­
ment. 

The data on the electronic expansion coefficient 
of iron furnish information regarding the pressure 
dependence of the electron state density y at the 
Fermi surface. The coefficient A of T in Eq. (2) 
for the volume expansion coefficient is 

3aFe = A = - V-18y I op. ( 7) 

Lifshitz and Kaganov[SJ have pointed out that y 
is related to the shape of the Fermi surface by 

2n2k2 ~ dsF 
Y = 3(2:n:n) 3 v 'f -v-' 

where ds F is an element of the Fermi surface, 
v is the electron velocity on that surface, and k 
is Boltzmann's constant. Using (7) and (8), we 
arrive at 

(8) 
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FIG. 3. ( aPb - OF e) /T versus T 2 • The intercept on the ordi­
nate axis determines the electronic component of the thermal 
expansion coefficient of iron. 

( 9) 

where KT = -V-1 (8V/8p)T. The quantity L has 
the dimensions of compressibility and can there­
fore represent the "compressibility" of the Fermi 
surface. Equation ( 9) enables us to determine both 
the magnitude and sign of L when the magnitude of 
K T is known in this temperature region. 

As already stated, the sensitivity of the 
apparatus enabled us to measure the difference 
between the compressibilities of lead and iron at 
liquid helium temperatures as the pressure was 
varied within the limits 0.1-1.0 atm. The com­
pressibility of lead at these temperatures was 
calculated using ultrasonic data. [ IO] For the com­
pressibility of iron we obtain KT = 5. 7 x 1o-13 

cm 2/dyne. Then L = ( 7.9 ± 1) x 10-13 cm2/dyne, 
which is positive, so that the Fermi surface is 
compressed under increasing pressure. 

The Griineisen constant for an electron gas, [ 11 ] 

was calculated from our values of f3 and K to­
gether with the value of Ce from [ 1]; taking V at 
20° C, [ 12] we obtain for iron r e = 2.3 ± 0.3, where­
as for a phonon gas at high temperatures we 
have'[ 13 ] 

r p = -dIne I a In v ;::::::: 2. 

It is interesting that rz and r e = - d ln y /d ln v 
have close values. 

Therefore the Debye temperature, which char­
acterizes the phonon density, and the quantity y, 
which determines the electron state density, vary 
alike for identical relative changes of volume. 

The authors wish to thank M. I. Kaganov and 
V. G. Bar'yakhtar for discussions of the results. 
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