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Expansions are derived in powers of ( aZ )2 for the relativistic Coulomb Green's function 
and for the wave function of a spinor particle with definite asymptotic momentum p, valid 
for arbitrary p. For large energies E and small angles J ~ 1/E the expansion contains 
a supplementary small parameter of the order of 1/E. 

UP to the present there has been no derivation of 
a closed expression for the relativistic Coulomb 
Green's function Gc, nor for the related Mr6ller 
function cp, the scattering amplitude T, nor the 
wave function I CfJp ) up corresponding to a definite 
asymptotic momentum p. Evidently if there does 
exist a closed form for these functions it has a very 
cumbersome analytic form, not suitable for practi­
cal purposes. 

In the present paper we propose a new expan­
sion of the relativistic functions in terms of the 
paramf.ter ( aZ )2q ln E/E, where q is the momen­
tum tJ ansferred to the nucleus and E is the energy 
of the particle. Each term of this expansion has 
meaning for arbitrary values of the asymptotic 
momentum p ( p2 = E2 - m 2 ) , including the case 
p-0. 

In a previous paper by the writer [see [1], Eqs. 
(4) and (7)] the following equation was derived for 
the M(/)ller function in the Coulomb field - aZV: 

(1) 

<p0 = 1 - aZG0V<p0, T0 = V<p0, (2) 

<p1 = (aZ2EG+)-1(1- <p0) = -G-T0• (3) 

Here G0, cp 0, and T0 are the "nonrelativistic" 
free Green's function, M(6ller function, and scatter­
ing amplitude [1]; a± are the Green's functions of 
the free Dirac equation with positive and negative 
energy E, which are diagonal in momentum space: 

Iterating Eq. (1), we obtain cp in the form 
00 

n=O 

The wave function I CfJp ) up is connected with the 
cp of Eq. (1) by the relation 

<pjp)up = j<pp)up, (7) 

(iJ-E+~m)up=O, p=ap, a~=-~a. (8) 

Using successively the free Dirac equation and the 
commutation relations of the matrices a and {3, 
Eq. (8), we can put the series (6) for the wave func­
tion in the form 

00 

(9) 

( F is an arbitrary function). 
When so written the wave function does not de­

pend on the matrix {3, and the dependence on the 
energy E comes in only through the parameter ~ 

= aZE/p contained in the function T0• The first 
term of the sum in (9) depends on an even number 
of matrices a, and the second on an odd number. 
Using the fact that the problem involves only the 
two vectors p and k, by invariance arguments we 

(4) can write 

G0 (k) = -2E , G±(k) = 7C ± E + pm, 7C == ka, 
k2-p2-ie k2-p2-is 

(5) 

where a and {3 are the Dirac matrices. A closed 
form for the function T0 in momentum space has 
been obtained in [1]. 

00 

aZ ~ (aZ) 2" (kl C-T0 (G+VC-TO)n IP> = aZ(AaTi +A4p). 
n=O (12) 

The invariant functions Ai are related to each 
other by the condition of symmetry with respect 

1331 



1332 V. G. GORSHKOV 

to time reversal, so that there are only three in­
dependent functions. 

Each term of the series (11) and (12) has mean­
ing for arbitrary p, as can be verified easily by 
writing out the integrals in the momentum space 
over the d3ki and making the change of variables 
ki = pni. Then all of the integrals are still con­
vergent and depend only on the direction of the 
momentum, n0 = p/p and the parameter ~ = aZE/p 
in the function T0, which is defined [see Eq. (25)] 
for all ~. 

At large energies E ~ p » m and small q 
= I k- pI ~ m (h = I k +pI ~ m) the expansion (12) 
contains, besides ( aZ )2, an additional small pa­
rameter q/E (or h/E ) . The appearance of these 
small parameters can be understood from the fol­
lowing considerations. The expansion (9) differs 
from the Born series for q; 0 (see [ 1]) by there­
placement of the quantity 2E in the numerator of 
the Green's function G0 of Eq. (5) by Qkp±, Eq. 
(10), and replacement of some of the potentials V 
by the function T 0• At high energies all of the 
terms of the expansion for q; 0 are of the same 
order in the energy, because the parameter of the 
expansion for q; 0 is the quantity ~ = aZE/p ~ aZ. 
For the same reason T0 and V are of the same 
order in E. Taking into account the fact that the 
main contributions to all the integrals come from 
the region ki ~ k, we conclude that the presence 
of G:- (or .G+) in (9) corresponds to the appear­
ance of an additional small parameter q/E (or 
h/E). 

The quantity q/E is small at small angles, and 
the quantity h/E is small at angles close to 180°. 
At high energies most of the processes occur 
mainly at small angles, and the cross section at 
large angles is small and of no practical interest. 
In the intermediate range of angles the two quanti­
ties q/E and h/E are of the order of unity and give 
no small factors. A more detailed analysis shows 
that the effective small factor that appears at small 
angles is of the order of q ln E/E. 

Thus the effective small parameter in the ex­
pansion (9) at small angles is the quantity ( aZ )2q x 
ln E/E. We hope to give a rigorous proof of this 
statement in another place. 

The meaning of the expansion we obtain becomes 
clearer on comparison with the well known proper­
ties of the expansion of the Coulomb function in par­
tial waves. [2, 3] The dependence on Z and E comes 
into the partial waves through the two parameters 
~ = aZE/p and yz = (Z2 - a 2Z2 ) 112• Terms of the 
Born series that diverge for p - 0 arise only 
from the expansion in the parameter ~. The fact 
that (9) does not depend explicitly on E and that 

all of the terms of the expansion are finite for p 
- 0 indicates that the series (9) does not contain 
any expansion with respect to the parameter ~. 

Consequently the expansion (9) is taken only with 
respect to the parameter 1> ( aZ )2 /Z. The effective 
value of l is equal to pr, where r ~ 1/ q, so that 
l ~ E/q. This leads to the expansion parameter 
which we have obtained. 

Everything that has been said applies also to 
the expansion (6) of the M¢'ller function. To verify 
this, we write out the expression for the product 
G + ( k) G- ( k' ) (we are interested only in the matrix 
structure, and therefore we omit V and T0 ): 

G+(k)G-(k') = 'kk'- p2 -(li -li') (E- ~m) 
(k2 - p2- ie) (k'2 - p2- ie) (13) 

Owing to the commutation rules (8) of the matrices 
a and {3 and the equation 

(14) 

the product of an arbitrary number of the combi­
nations (13) will contain ( E -{3m) only to the first 
degree. Therefore the general expression for the 
M¢'ller function can be written in the form 

(k2icplk1) = B1 + (aZ) 2B21i21i1 + aZ(Bsli2 + B~li1) 
+ {B/ + (aZ) 2B2'1i21i1 + aZ(B3'1i2+B,1i!)}(E- ~m). 

(15) 

Here the functions Bi and Bi depend on E only 
through the parameter ~. 

The terms of the expansion of Bi in powers of 
( aZ )2 have meaning for arbitrary p and contain 
the additional small parameter I k2 - k1 I /E; when 
(13) and (14) are taken into account this can be 
verified in precise analogy with the case of the 
wave function. By means of Eq. (1) we can express 
the functions Bi in terms of the Bi. The condition 
of symmetry under time reversal imposes one fur­
ther relation between the functions Bi, so that only 
three independent functions Bi remain. 

The corresponding representation for the rela­
tivistic Coulomb Green's function Gc and the 
scattering amplitude T can be obtained from (6) 
by means of the relations 

Gc = cpG+, T = Vcp, cp = 1 - aZG+T. (16) 

In the Furry-Sommerfeld-Maue approximation 
the wave function I <Pp), the M¢'ller function cp, 
and the Green's function Gc can be represented 
in the form [1] 

l)See the note added in proof on page 773 in[2 ], where it is 
indicated that the expansion parameter is the quantity (aZ) 2/l, 
and not (aZ)2 /F. 
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= 2~2 (- 0~ - ctZ ~~) (k Jll>p (i11)) ~~-+o' 
. - 1 { q2 + 112 }i~ 

<k I <Dp (tTJ)> = q2 + 112 (q + p)2 _ (p +i11)2 • 

q = k- p, N = e"£ I 2f(1- is); 

IPFSM = 'Po + aZqJ1 = 1 - aZG+TO, 

GFSM = IPFSMG+ = G+- aZG+TOG+. 

(17) 

(18) 

(19) 
(20) 

The operator \7 p in (17) does not act on q and ~. 

By means of the representation for cp 0 [see Eq. 
(13b) in [1 J] the third and fourth terms of the series 
for the wave function (9) can be written in the form 

a 
(kjqJ0G+VjqJp1) = __ . S(11) ITJ-+0, (21) 

811 

(kjqJ1G"+VJIJlp1) = c-(k)S(O), (22) 

S(TJ) = (kjT;n°G+Voj<pp1), T;n° = V;11 <p0, (23) 

1 1 
<kziV·Ik~>=- v-v ro ro 

tl] - 2:rt2 (k2- kt)2+ 112' 0 = ' 0 """ 0 

(24) 

The momentum representation ( k2 I Tf TJ I k1 ) 

with "free" left-hand momentum k2 has been ob­
tained in [1] by applying the procedure of displace­
ment of the Born series, beginning at the right 
side, i.e., from the position of the momentum k1• 

This representation is 

<k2jT;TJ0 Ik1) = ~ dx1ex.p{is~ ~xt',} 
0 X! AI 

f) x, 

x 8x1 ((k2jVpA,+;11 jk1x1)), (25) 

At2 = (1-n12xi)(1-xt), n;=k;lp, (26) 

where the matrix element in the integrand is de­
fined by (24). 

This representation (25), however, is unsuitable 
for the calculation of the matrix element (23), 
where we must have available a "free" right-hand 
momentum k1• The required representation can 
be obtained by applying the procedure of displace­
ment of the Born series for ( k2 I T~ TJ I k1 ), [ 1 J be­
ginning on the left, i.e., from the side of the mo­
mentum k2• We thus get 

<k2! T;n° I kt> = ~ dx2 exp{is ~ ~~21 ,} 
o x, Xz Az 

f) 
x -8x 2 ((k2x2! VpA,I k1)), (27) 

Az2 = (1- nz2x) (1- x) - J.L2X2, f.L = 11 I p. (28) 

The two representations can be reduced to each 
other by means of the rather nontrivial change of 
variables 

1 z-1 
x= 1+Yt' Yt= (1-nl2)4;-• 

z = 2- (1 + n22 + J.L2)xz + 2A2 

Xz(1- n22 - J.L2 + 2~J.L) 

By means of (27) we can put (23) in the form 

(29) 

(30) 

The matrix element in the integrand in (30) has 
been calculated previously, C4J and is of the form 

Cy = ky- p- (pA3 + iA-)p I p. (32) 

The symbol written in the integrand is defined by 
(18). 

Substituting (31) in (30), replacing the variable 
x 3 by y, and denoting x2 by x, we get 

N 00 l. dx 1 dx' 
S ( 11) = Zn2 ~ dA- ~ A exp {is ~ x' A'} 

0 0 X 

1 XftzCx + Cxfi(1 +A) 
X 2pi k2x2-(p+pA+iA-)2'<kzxi<Dp(pA+iA-)), (33) 

A2 = (1- n22x) (1- x)- J.L2x, 

Cx = kx- P- (pA + iA-)p/p. (34) 

When in (33) we go over to the variable z of (29) 
it is not hard to verify that (33) has meaning for 
arbitrary p. Furthermore the main contribution 
to the integral (33) comes from x ~ 1 and i\ ::>, q. 
Taking into account the fact that for large E ~ p 
» m the part of the integrand in (33) that is after 
the factor 1/2pi is of the order of magnitude of 
unity, we come to the conclusion that the entire 
integral is of the order q ln E/E (the ln E comes 
from the integration of dx/ A for x ~ 1 ) . We note 
that the smallness so obtained is lost when we re­
place the Cx of (34) by 2E. 

The author is grateful to A. Mikhallov, V. Poli­
kanov, and L. A. Sliv for a discussion. 
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