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We consider a new type of combined resonance, which arises in inhomogeneous static mag­
netic fields. Spatial inhomogeneity of the magnetic field results in a mixing of the motions 
with respect to coordinate and spin degrees of freedom. This in turn leads to spin transitions 
induced by the electric component of the high-frequency electromagnetic field. We calculate 
the intensity of combined resonance due to macroscopic inhomogeneity of the magnetic field 
or to microinhomogeneity of the spontaneous field in ferro- and antiferromagnets. It is shown 
that in both cases combined resonance may be much more intense than paramagnetic reso­
nance. The conductivity-electron Hamiltonian which contains a periodic electrostatic poten­
tial and a spontaneous magnetic microfield, is transformed as part of the analysis into the 
effective-mass Hamiltonian, which contains two different mean homogeneous magnetic fields. 
One of the fields is identical with the induction and acts on the orbital motion of the electron, 
and the other appears in the spin term of the Hamiltonian and is itself dependent on the elec­
tron Bloch functions. 

INTRODUCTION 

IT was shown earlier [ 1• 2] that spin-orbit interac­
tion can lead to combined resonance of the band 
carriers in semiconductors, i.e., to the excitation 
of spin transitions by the electric field of the elec­
tromagnetic wave in the presence of a homogeneous 
static external magnetic field. Azbel' [ 3] considered 
an effect which in some sense is the opposite, 
namely, the magnetic field of the electromagnetic 
wave in a metal is essentially inhomogeneous in 

1. COMBINED RESONANCE IN A MACROSCOPI­
CALLY INHOMOGENEOUS MAGNETIC FIELD 

the space near the surface, owing to the skin ef­
fect, and induces conduction-electron spin transi­
tions that combine with the change in the state of 
orbital motion. 

In this paper we consider spin transitions in­
duced in the carriers of semiconductors, by the 
electric field of the electromagnetic wave. The 
mixing of the motions over the coordinate and spin 
degrees of freedom, necessary for such transitions, 
will be due not to the spin orbit coupling (as in[1' 2]), 

but to the inhomogeneity of the static magnetic 
field. This inhomogeneity can, for example, exist 
in an external static field, may constitute the spon­
taneous field of ferromagnets or antiferromagnets, 
or else may be due to molecular or colloidal mag­
netic impurities. 

The induction of the external static magnetic 
field will be denoted by B + b(r), where B is homo­
geneous and b(r) is small compared with B. The 
mixing of the motion over the coordinate and spin 
degrees of freedom is brought about by the term 
{3 (cr ·b) of the Hamiltonian of the electron, where 
{3 -effective spin magnetic moment of the electron 
({3 = g{3 0/2, {3 0 =Bohr magneton). Inasmuch as 
b(r) is of interest to us only as the cause of the 
mixing, we take account of it only in the aforemen­
tioned term of the Hamiltonian, and regard it as a 
small perturbation. 

In the first order of perturbation theory, the 
matrix element of an arbitrary operator L(r), 
which depends only on the spatial coordinates of 
the electron, is equal to 

<n +I L (r) In'_> = ~ ~ { <'¢nIL I '1Jl1> Nzl b2l '¢n'> 
LJ En'-E~-2~B 

l 

(1) 

where </Jn and En-states and Landau levels for the 
coordinate part of the Hamiltonian (for b = O), 

n-aggregate of the three quantum numbers, 
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b 2 = bx - iby, and ± denotes the spin states of the 
electrons with rJ" z = ± 1. The Oz axis is chosen 
parallel to B. For simplicity the band is assumed 
to be nondegenerate and the effective mass m and 
the g-factor are assumed isotropic. 

To determine the intensity of the combined 
resonance it is necessary to calculate with the aid 
of (1) (n +I vi n'-), where v = m-1 (-iti\7 + eA/c)­
electron velocity operator, A= (0, Bx, 0)-vector 
potential of the homogeneous field B. In the case 
of arbitrary b2(r), the electromagnetic-wave ab­
sorption spectrum is continuous, since arbitrary 
increments of the kinetic energy of the electron in 
the Oz direction are possible in the quantum tran­
sition. However, the spectrum breaks up into 
narrow bands if b 2(r) varies as a function of z 
smoothly enough to make 

1 vw I 1 db2! - - - -- ~ 1 and r, 
We m b2 dz 

or else has the same period as the lattice: here 
we= eB/mc-cyclotron frequency, y = 2j3B/nwc 
= J3/(en/2mc), and W is equal to kT in nondegener­
ate semiconductors and to the Fermi energy in de­
generate semiconductors. The frequencies that can 
be observed in this case are w = wclp ± y I, where 
p is an integer. 

By way of an example let us consider the case 
when b2(r) is a linear function of the coordinate. 
We assume (for n = n') 

<+1~1-) = irocv<+lrl-), X1 2 = 11z(X + iy), 

X3 = z, rB = (eli I eB) •;, ( ~ 10-3 I 4B'I', 

if B is in Gauss). (2) 

Only the matrix elements of the pure spin transi­
tions differ from zero (n = n', w = w elY I); they are 

< I X .1. _) _ ..!_ 8bd8Xs 
+ 3 - 2yrB B/rB · (3) 

The functions 1/Jn were normalized to unity in the 
principal region of cyclicity. In calculating the 
quantities (3) by means of formula (1), special cau­
tion must be exercised in the analysis of the matrix 

elements in which the states n and l have identical 
oscillator quantum numbers. These terms, which 
contain improper integrals, are best eliminated by 
using the commutation relations between the com­
ponents of v and r. 

If abz/a z = 0, then it follows from curl b = div b 
= 0 that a b2/ a X2 = 0, i.e., the absorption vanishes 
at one of the circular polarizations of the wave in 
the xy plane. 

To estimate the intensity of the combined reso­
nance in question, it is convenient to compare the 
intensity with that of ordinary paramagnetic reso­
nance at equal amplitudes of the electric field in­
tensity of the wave in the former case and of the 
magnetic field in the latter. The ratio of these in­
tensities is equal to 

I I g'A \2 
l]i = l < + I Xd- > -~: 

where 1t- = 2j3 0/e is the Compton wavelength of the 
electron. For example, if /V'b 2I/B :o:; 10 cm-1 and 
rB :o:; 10-5 em, then we get 17i ~ 10 2-103. The quan­
tities 11 1, 2 and 17 3 can be appreciably larger if 
y :o:; ± 1 and IY I « 1, respectively. Thus, the com­
bined resonance in question, which coincides in 
frequency with the paramagnetic resonance, can 
greatly exceed the latter in intensity. 

2. COMBINED RESONANCE IN SPONTANEOUS 
MAGNETIC FIELD OF FERROMAGNETS AND 
ANTIFERROMAGNETS 

In this section we neglect completely the spin­
orbit interaction, i.e., we ignore it both as a cause 
of the mixing of the motions of the band electron 
over the coordinate and spin degrees of freedom, 
and as a cause of splitting of the bands and the 
g-shift (g = 2). We do, however, take into account 
the interaction of the electron spin with the mag­
netic field of the spin and orbital momenta of the 
other electrons. In ferro- and antiferromagnets 
the latter can be represented by simple models in 
the form of a spontaneous magnetic field oscillating 
with the same periods as the lattice. This field, 
together with the external statistical field, consti­
tutes the total magnetic microfield h(r). It is as­
sumed below that the conduction band is nondegen­
erate, but it can have a multivalley structure. 

We start with the Pauli one-electron Hamilton­
ian, which includes the periodic electrostatic po­
tential of the lattice and the magnetic field h(r), 
and then go over to the representation of the effec­
tive-mass method[ 4- 7J. This is done by a trans­
formation in which the expansion of the electron 
wave function in terms of the Bloch waves goes 
over into an expansion in plane waves. We assume 
that all the inter-band elements in the energy ma­
trix are small, since they contain either the quasi­
momentum k or the magnetic field h. These inter­
band elements can be approximately eliminated in 
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the usual manner[T] with the aid of a canonical 
transformation in both the coordinate and the spin 
parts of the Hamiltonian. As a result we obtain the 
Hamiltonian of the effective-mass method 

r,:z AA A 

H =-2 2j (m-1)ij ~ kj + ~oa [Sil (k0) + (k~\.) Sil (k0)], 
ij I ( 4) 

where !_ll-1 is the tensor of the reciprocal effective 
mass, k = -iV' + eA/cti, and A-vector potential of 
the macroscopic induction B = h; 

Here uko + k (r) -periodic multiplier of the Bloch 
wave function, normalized such that I Uko + k 12 = 1. 
The superior bar denotes averaging over the unit­
cell volume; k0 + k-total quasimomentum of the 
electron, k 0-quasimomentum value corresponding 
to the minimum of the energy in the valley in ques­
tion. 

Let us dwell in somewhat greater detail on an 
analysis of (4). Usually the transition to the pres­
entation of the effective-mass method makes it 
possible to simplify the solution of problems in­
volving the motion of an electron in smooth external 
fields. The field h(r) is not smooth; however, since 
it has the same period as the crystal lattice and 
since the magnetic energy {3 0h is small compared 
with the distance between bands, this magnetic 
field leads to the appearance in the Hamiltonian (4) 
of new terms which have a simple purely macro­
scopic structure. The first of these, {3 0u 5d, des­
cribes the effective spin energy in the magnetic 
field, and the second {3 0u d~. · V'k0) Sil- the mixing of 
the motions over the coordinate and spin degrees 
of freedom in a homogeneous magnet. 

An unexpected singularity of the operator (4) is 
that Sil and the field B which enters in k are differ­
ent mean macroscopic fields. Namely, B is ob­
tained from h(r) by means of the usual averaging, 
and is the macroscopic magnetic induction, whereas 
Sil is defined by (5) and is consequently essentially 
dependent on the distribution of the electron den­
sity in the Bloch states of the band electron with 
quasimomentum close to k 0• The fact that the 
orbital-motion Hamiltonian should contain the in­
duction B has already been experimentally veri­
fied[aJ and theoretically justified[ 9]. The field B, 
naturally, does not depend on the states of the elec­
trons, whereas 5d is different for electrons of 
different valleys. Inasmuch as the symmetry with 
respect to time reversal implies that V'k I uk + k 1 2 

vanishes when k0 + k = 0, we find that V'ko .<Ja i 0 = 0 

for the valley with k 0 = 0, i.e., the last term of (4), 
which leads to mixing of the motions over the coor­
dinate and spin degrees of freedom, vanishes. In 
the same case, k 0 = 0, we have in a compensated 
antiferromagnet Sil = B. 

We shall consider below two cases of combined 
resonance in magnets. 

I. Single-domain magnet with ko ;r. 0. In this 
case the mixing of the coordinate and spin motions 
is realized by the last term of the operator (4). We 
confine ourselves for simplicity to the case of an 
isotropic effective mass of the conduction electron 
(in reality, however, this is most frequently not 
the case). The velocity operator, the matrix ele­
ments of which determine the probabilities of the 
quantum transitions of the electron, is in this case 
equal to 

A 1 1i, A ~ 
v = in [rH] = m k + 1t Vk, (aSil). (6)* 

The matrix elements v can be easily calculated 
by using a formula similar to (1), with f..= v, and 
by regarding the last term ill the square bracket 
of (4) as a perturbation b = (k. u) Sil. If we use rela­
tions (2), we obtain for pure spin transitions 

i r asa2 
<+]X1.21->=+4Sil1=FfaK0 ' 

2,1 

i asa2 
<+JXa!-)=-25a8Kao; (7) 

332 = 5dx•- ifiav'• K~,2 = 1Mkxo ± ik110), Ka0 = kzo, 
r = 2~ofia = -~-0 - fia nwc en f2mc B . (8) 

In the derivation of these formulas it was assumed 
that the quantization axis of the orbital Landau mo­
tion is the vector B, along which is directed the Oz 
axis of the unprimed Cartesian frame; the quan­
tization axis of the spin motion, on the other hand, 
is the vector fia, along which is directed the Oz' 
axis of the primed system. The choice of the latter, 
consequently, is different for different valleys. 

To compare the intensity of the combined reso­
nance in question with the intensity of ordinary 
paramagnetic resonance we assume that in order 
of magnitude I V'k0 Sil21 I fia ~ d, where d-lattice con­
stant. Then1Ji ~ (d/~)2 ~ 106. 

II. Multidomain magnet with k0 = 0. If k0 = 0 
then, as noted above, in a single-domain magnet 
there is no combined resonance in the approxima­
tion considered. However, such resonance is 
possible in multidomain magnets, since the mixing 
of the coordinate and the spin motions is realized 
as a result of the coordinate dependence of fia on 
going through the domain boundaries. Inasmuch as 
in a compensated antiferromagnet fia = B when 

*[rH] = r x H. 
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k 0 = 0, and B is practically independent of the co­
ordinates even in a single-domain crystal, no com­
bined resonance should arise in it. We shall there­
fore consider below single-crystal ferromagnets 
and ferrimagnets. 

Assume that the domains are plane-parallel 
layers separated by the planes x = const. We as­
sume further that the external magnetic field is 
directed along the Oz axis, and the average spon­
taneous field in neighboring layers is directed 
alternately in the positive and negative Oy direc­
tions. In this case the spontaneous field makes no 
contribution to fli3z, i.e., 5iJ z = Bz· The perturbation 
b2(r) which enters in formula (1) is now equal to 
5iJ 2(x) = - i 5iJ y(x). Within the limits of each domain, 
fli3y =±I fli3y I does not depend on x, but fli3y revemes 
sign on going through the domain boundary. 

In order for the field 53y to be regarded as a 
small perturbation of the Landau states, we as­
sume that I fli3y I « Bz >:J B. We assume also that 
the thickness of the transition layer between the 
domains is much smaller than rB defined by 
formula (2), making it possible to assume that the 
field fJi3 y experiences a jump on going through the 
boundary of the domain layers. Then we obtain for 
the pure spin transition of the electron at the low­
est Landau level, 

1 I fli3v lrB (rBN)'I• 
< + I X1 '2 1-> = 2 (2:rt)'f• 1 + r B L ' 

( + I Xal-) = 0. ( 9) 

Here L-dimension of the crystal in the Ox direc­
tion and N-number of domain layers in it. The 
matrix elements (9) are already the mean squares 
over all possible positions of the center of the 
Landau oscillator in the volume of the crystal. 

For lb/BI = 0.1, rn = 0.5 x 10-5 em, rnN/L 
= 0.01, and 11 ± y I - 1, we obtain 7J 1, 2 = 7 x 105• 

In the case II, and also in the case considered 
in Sec. 1, the spatial homogeneity of the magnetic 
induction leads to a broadening of the resonance 
absorption band, owing to the difference between 
the transition frequencies at different points of the 
crystal. However, if the field b(r) is directed per-

pendicular to B, this undesirable effect is minimal, 
being not in first but in second order in b/B (if the 
g-factor is isotropic, or if B is directed along a 
principal axis of the g tensor). 

The three cases considered above and the esti­
mates made show that combined resonance due to 
the inhomogeneity of the magnetic field should 
possess a considerable intensity, which can greatly 
exceed the intensity of ordinary paramagnetic 
resonance. Therefore paramagnetic resonance may 
be masked by combined resonance. 

The combined resonance due to the inhomogeneity 
of the static magnetic field can arise not only for 
band carriers but also for local electron centers. 

1 E. I. Rashba, FTT 2, 1224 (1960), Soviet Phys. 
Solid State 2, 1109 (1960). Proc. Intern. Conf. on 
Semicond. Physics, Prague (1960), Special Publi­
cation of the Czech J. of Phys. 1961, p. 45. 

2 E. I. Rashba and V. I. Sheka, FTT 3, 1735 and 
1863 (1961), Soviet Phys. Solid State 3, 1257 and 
1357 (1961). I. I. Bo!ko, FTT 4, 2128 (1962), Soviet 
Phys. Solid State 4, 1558 (1963). G. E. Gurgenish­
vili, FTT 5, 2070 (1963), Soviet Phys. Solid State 
5, 1510 (1964). 

3 M. Ya. Azbel', FTT 4, 568 (1962), Soviet Phys. 
Solid State 4, 415 (1962). 

4 s. I. Pekar, JETP 16, 933 (1946); J. of Phys. 
USSR 10, 431 (1946). 

5 E. N. Adams, J. Chern. Phys. 21, 2013 (1953). 
6 C. Kittel and A. Mitchell, Phys. Rev. 96, 1488 

(1954). 
1J. Luttinger and W. Kohn, Phys. Rev. 97, 869 

(1955). 
8 J. R. Anderson and A. V. Gold, Phys. Rev. 

Lett. 10, 230 (1963). 
9c. Kittel, Phys. Rev. Lett. 10, 339 (1963). 

Translated by J. G. Adashko 
277 


