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The random-force method previously proposed [ 1• 2] in the Lagrangian description of tur
bulence (when the motion of fixed fluid particles is being traced) is used to describe the 
Euler velocity field Vi (x, t). An equation relating the second- and third-order velocity 
structural functions with the external correlation function is derived. From this equation it 
follows, in particular, that the third-order structural function decreases like r-4 at distances 
larger than the external correlation scale L. Further, an equation describing the equilibrium 
conditions of turbulent flow is derived for the characteristic velocity functional. In the limit
ing case when L---... oo a single external parameter, the energy influx E:, enters the equation, 
in accordance with the similarity hypothesis proposed by Kolmogorov. 

1. FORMULATION OF THE PROBLEM 

THE method of random forces in the Lagrangian 
description of turbulence (when the motion of a sys
tem of fixed liquid particles is traced) was pro
posed by the author in earlier papers[i, 2], in which 
the analysis was purely statistical and based on the 
Langevin equations for the velocity of a liquid par
ticle. On going over to the Euler description of 
turbulence, i.e., to a description of the velocity 
field Vi (x, t), it is natural to generalize the method 
of random forces by including the equations of hy
drodynamics. 

We write down the equations of motion of a 
viscous incompressible liquid with random force in 
the right side 

av;(x, t) ( ) av;(x, t) aP(x, t) 
--'c-~ - - Vk X t 

at - ' axk ax; 

a2v·(x t) +v--at; +fi(x,t); (1.1) 
Xk 

av;(x, t) = 0. 
ax; 

Here P-pressure divided by the constant density, 
and v-kinematic viscosity; summation from 1 to 3 
is implied for the repeated indices. Without loss 
of generality, the force can be assumed to be 
solenoidal, since the potential part can be included 
in the pressure gradient. The pressure is in turn 
connected with the velocity by the relation 

!lP = _ av; avk (1.2) 
axk ax;' 

which follows from (1.1). 
We shall consider the model of homogeneous, 

isotropic, and statistically stationary turbulent flow 
of a liquid, the kinetic energy of which is main
tained by work done by external forces. The forces 
will also be assumed to be homogeneous and iso
tropic random functions of the coordinates and 
statistically stationary in time. In accordance with 
the similarity idea advanced by Kolmogorov[ 3J, we 
shall try to choose the forces in such a way, that 
the energy influx E: will, in scales that are suffi
ciently small compared with some external tur
bulence scale L, be the main parameter character
izing the influence of the external forces. In[i, 2J, 
when considering the inertial interval of times in 
the Lagrangian description of the turbulence, we 
made use of random forces that were a-correlated 
in time and had a Gaussian probability distribution. 
Such forces are characterized only by the value of 
the energy influx. In the present article we also 
use Gaussian forces that are a-correlated in time, 
but the Euler description of turbulence. 

Gaussian forces with zero mean value are de
fined completely by their second-rank correlation 
tensor, which in this case is of the form 

<f;(x + r, t + T)f~t(x, t)> = F;k{r)<'l(-r}, (1.3) 

where the angle brackets denote probability aver
aging, a(T)-a-function, and Fik-spatial part of the 
correlation tensor. The corresponding spectral 
tensor 

_f;k(p) = ( 2~)3 ~ e-ipx F;k (x) d3x 

with account of the isotropy and the solenoidal 
character of the forces, is written in the form 

(1.4) 

:F;k{p) = ff(p)(i'J;~<-PiP~<P-2), (1.5) 
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where Oik-unit tensor and _Y(p)-unique scalar 
function characterizing the selected random forces 
(one can use as the defining function also the func
tion Fii(r), which is connected with ,9:"'(p) by a 
Fourier transformation). 

The external turbulence scale is defined by the 
formula 

In the limiting case as L ---. ro there should remain 
only one parameter E characterizing the external 
forces. From dimensionality considerations it is 
clear that in this case 

ff (p) = Ceb(p), (1. 7) 

where C is a dimensionless constant, which we 
shall show in Sec. 3 to be equal to unity. 

2. CORRELATION OF GAUSSIAN RANDOM FUNC
TIONS WITH FUNCTIONALS THAT ARE DE
PENDENT ON THEM 

We shall find useful the following formula, which 
is valid for Gaussian random functions that are 
a-correlated in time and homogeneous in space: 

<f; (x, t)R [/]) = ~ F;k (x- X
1

) < b/k (x~~~f!3x1 dt> d3X
1 

( 2 . 1) 

Here R-functional of f, on the right side of the 
angle brackets is the variational derivative of this 
functional, Fik is the spatial part of the correla
tion tensor, defined in accordance with (1.3), and 
the integral is taken over all three-dimensional 
space. 

To prove (2.1) it is simpler technically to con
sider a more general case of arbitrary Gaussian 
random functions fi(s) with zero mean value, and 
with a correlation tensor 

<f;(s)/k(s1 )> = Fil,(s, S 1 ), (2.2) 

where s-aggregate of arguments on which the ran
dom function depends. For such functions we shall 
prove the formula 

R[j] ip ' ( bR[j]) I (23) 
<f i ( s) > = J ik ( s' s ) ' 0 f ( s') as' ds ' . 

where the integral extends over the region in which 
the functions are defined. Formula (2.1) is obtained 
from (2.3) as a particular case when s denotes the 
aggregate of the spatial coordinates and of the time 
and the correlation tensor has the special form 
(1.3). 

We represent the functional R in the form of a 
functional Taylor series in the power-law func
tionals 

~) I I R;, ... in {s1, ... , Sn) = bnRUJ bfi, (st)dsf ... {jj;n (sn)dsn f=O" 

(2.5) 

The tensor (2.5) is obviously symmetrical in its 
arguments taken together with the tensor indices. 
Multiplying (2.4) by fi(S) and averaging, we obtain 

~co 1 ~ ~ (n) <f;(s)R[j]) = - . . . R . (st, .... , sn) n! tJ .•• tn 
n=l 

(2 .6) 

We make use of the fact that the mean value of the 
product of an even number of quantities with a joint 
Gaussian probability distribution is equal to the 
sum of the products of the mean values of all 
possible pairwise combinations. The mean value 
of the product of an odd number of such quantities 
is equal to zero. It is easy to see that in this case 

n 

<f;(s)/; 1 (st) ... f;n(sn)> = ~ <J;(s)f;a (sa)) 
a=! 

X <fi 1 (s!) ... /;~-• (sa-t)fi~+• (sa+t) ... fin (sn) ). (2. 7) 

Substituting (2. 7) in (2.6) we obtain, with account of 
the symmetry of the tensor (2. 5), 

00 1 
<f; (s) R [fl> = ~ ----- ~ F;; 1 (s, St) 

n=l (n-1)! 

(2.8) 

On the other hand, from (2 .4), again taking into ac
count the symmetry of the tensor (2.5), we have 

bR[j] ~ 1 i s (n) 1 

ofk(s')dsl = =~ (n-1)! J ... R~t;, ... ;n(s, s2, ... , s,.) 

(2.9) 

Substituting (2.9) in the right side of (2.3), we see 
that the resultant expression coincides with (2.8). 
This proves by the same token (2.3), and conse
quently also (2.1). 

Using (2.3), we can easily obtain additional 
formulas for the correlation of the power-law 
functional with the arbitrary functional, and also 
for the correlation of two arbitrary functionals. 
We shall not write out these formulas, which we do 
not need in this article. 
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3. CORRELATION BETWEEN THE FORCE AND 
THE VELOCITY, AND STRUCTURAL VELOCITY 
FUNCTIONS 

We multiply the first equation of (1.1) by Vi (x, t) 
and average. Taking into account stationarity, 
homogeneity, and incompressibility we obtain 

<f;(x, t)v;(x, t)) = v<ov;(x, t) / oxk) 2) =E. (3.1) 

Hence, using (2.1) we get 

\ . _ , < 6v; (x, t) ) 3x' _ 
J F,k(x x) 6/k(x', t)d3x'dt d -E. (3.2) 

To calculate the variational derivative of the 
velocity with respect to the force we write down 
(1.1) in the form 

t t 

v;(x,t)=v;(x,O)+ ~A;[v(<),x]d<+ ~f;(x,-r)d, (3.3) 
0 0 

where A is the operator of the Navier-Stokes equa
tion, and the pressure is assumed eliminated with 
the aid of (1.2). Taking the variational derivative 
of each term in (3.3), we get 

t 
6v;(x, t) S Md v(<), x] 

6/k(x', t')d3x'dt' = 1, 6/k(x', t')d3x'dt' 

+ v(t- t')6;k6 (x- x'). (3.4) 

Here 0 < t' ::::: t, y(T)-unit function equal to unity 
when T > 0, 1/2 when T = 0, and zero when T < 0. It 
is shown in (3.4) that the velocity cannot depend on 
the force taken at a later instant of time. As 
t'- t, the first term on the right side of (3.4) 
drops out, and consequently 

6v;(x, t)/6/k(x', t)d3x'dt = _!_6;k6(x- x'). (3.5) 
2 

Substitution of (3.5) in (3.2) yields 

F;; (0) = 2E, (3.6) 

from which it follows that the constant in formulas 
( 1. 7) is equal to unity. 

We now multiply (1.1) by vj(x', t) and average. 
Symmetrizing the obtained equation and taking 
stationarity, homogeneity, isotropy, and incom
pressibility into account, we obtain 

a ~ 
2- (vk(x, t) v; (x, t) vi(x', t)>- 2v --(v; (x, t) ui(x', t) > 

OXk oxk2 

= (/; (x, t) vi (x', t)) + <fi (x', t) v; (x, t) >. (3. 7) 

We have used here, in particular, the fact that in a 
homogeneous, isotropic, and incompressible stream 
the pressure does not correlate with the velocityC 4J. 
Taking (2.1) and (3.5) into account, we have 

(/;(x,t)vi(x',t)) = ~ F;i(x-x'). (3.8) 

We transform the left side of (3. 7) in analogy with 
the procedure used in [ 4]. We obtain ultimately the 
following equation: 

dD2 (r) 2 r 
D3(r)-6va;:-=-7~ p"F;;(p)dp, (3.9) 

where 

Dn(r) = <[vr(x + r) - Ur(x) ]n) 

-structural functions of the velocity field (the in
dex r denotes projection on the r direction). 

Taking account of (3.6) and (1.6), we write 

F;;(r) = 2EijJ(r/L}, ¢(0) = 1, ¢"(0) = -1, (3.10) 

where lfi(x)-dimensionless function. Expanding this 
function in a series and taking parity into consider
ation, we get from (3.9) 

D3(r)- 6v dD:t) =- ; er [ 1- 1~(-i,-r + 0 ( 1J1 
(3.11) 

When r « L, only the first term remains in the 
right side of (3 .11), which now goes over into the 
Kolmogorov equation [ 5]. 

For distances that are large compared with the 
internal turbulent scale Z0 = v 314 E-114 [ 3], the second 
term in the right side of (3.9) is small, and conse
quently 

2 T 

Da(r) =-;:4 ~ p"F;;(p)dp. (3.12) 
0 

The turbulent stream can be homogeneous and 
isotropic in scales that are larger than the external 
correlation scale (for example, the turbulence be
hind a screen whose dimensions are large com
pared with the dimensions of each individual mesh). 
If we assume that Fii(P) decreases with increasing 
p sufficiently rapidly, so that the integral in (3.12) 
converges as r - 00 , then we get at large distances 

00 

Da(r) =- aEL(L/r)', a= 4 S x"¢(x)dx, (3.13) 
0 

where a -dimensionless constant. 
We note that Batchelor and Proudman [sJ ob

tained an asymptotic expression analogous to (3.13) 
for the problem concerning time-attenuating tur
bulence, under the condition that at the initial in
stant of time the cumulants of the velocity field de
crease at large distances more rapidly than any 
power of the distance. 

4. GENERALIZED HOPF EQUATION 

Gaussian random forces 6-correlated in time 
were used recently by Edwards [ 7J, who wrote down 
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some equation for the probability distribution den
sity of a turbulent velocity field. However, the 
probability distribution density in functional space, 
as well as the volume in functional space, has no 
clearcut mathematical meaning, so that the entire 
analysis in [ 7] has a heuristic character (which 
does not detract from the value of this interesting 
paper). The probability distribution in functional 
space is conveniently described with the aid of a 
characteristic functional 

<I>t[y] = (exp {i(y, v(t))}), 

(y, v (t)) = ~ y; (x) v; (x, t) d3x (4.1) 

(yi(x)-real functions that fall off sufficiently 
rapidly at infinity). Different correlation moments 
of the velocity field are expressed in terms of 
variational derivatives of the functional (4.1), 
taken at y = 0. 

The idea of using a characteristic functional in 
turbulence theory belongs to Hopf[B], who obtained 
from the Navier-Stokes equation a certain linear 
variational-differential equation 

where 

2z<D = i ~ yk(x) a~z ( 6yz(x) d~~k (x) d3:z;) d3:z;, (4.3) 

2l<D = ~ Yk (x) a::2 ( 6yk ~~ d3x) d3x (4 .4) 

(Yk(x)-divergence-free part of the field Yk(X)). 
To investigate the stationary turbulence mode, 

Hopf proposed to seek that solution of his stationary 
equation [Eq. (4.2) without the left side], which 
describes the structure of the small-scale turbu
lence and corresponds to the Kolmogorov similar
ity hypotheses. However, one might think that the 
stationary Hopf equation does not contain such a 
solution, since it does not take into account the 
energy transfer from the large-scale to the small
scale motion. In particular, from the stationary 
Hopf equation we obtain, by variational differentia
tion, Eq. (3.9) without the right side, which, as can 
be readily seen, can correspond only to the quies
cent state. In this connection it is advantageous to 
generalize the Hopf equation with account of the 
external forces that supply energy to the turbulent 
flow and assume the role of large-scale motions. 

Differentiating (4.1) with respect to the time, 
we have with account of (1.1) 

8<Dt[y] - . {' ( ) <{- ( t).avk (x, t) ap (x, t) 
at - l.) yk X Vz X, OXz - axk 

+ 82vk (x, t)} 
'II 8xz2 

X exp {i (y, v {t))})a2x 

+ i~yk(x) (/k(x, t)exp{i(y, v(t))})a3x. (4.5) 

From the very procedure of the derivation of the 
Hopf equation [B] it follows that the first term in 
the right side of (4.5) coincides with the right side 
of (4.2). We transform the second term on the 
right side of (4.5), with allowance for (2.1) and 
(3.5): 

(/k (x, t) exp {i (y, v (t))}) = \' Fkz (x- x') < 6 
.) 6/z (x', t) a3x' at 

X [exp {i (y, v (t))} 1) d3x' = i ~ Fkz (x- x') 

[\' ( "} < 6vm (x"' t) { • ( ( )}>as "]as I 
X jYm X 6/z (x', t) asx' dt exp I y, v t) X X 

= ~ (~Fkz(x-x')y1 (x')a3x')<Dt[y]. (4.6) 

Ultimately we obtain 

a<t>z [yJ I at= (22 + '1/21 + 2o) <Dz [yJ, (4. 7) 

2o = - + ~~ Fkz (x- x') yk (x) y1 (x') asx a3x'. (4.8) 

It is natural to call (4. 7) the generalized Hopf 
equation. The supplementary term describes the 
influence of the external forces, and does not de
pend on the concrete form of the operator of the 
Navier-Stokes equation. In the spectral represen
tation we have 

2o =- ~ ~ .fkl (p) Zk (p) Zz (- p) a3p, 

(4.9) 

Expressions for the operators 2 2 and 2 1 in the 
spectral representation are given in the paper of 
Hopf[B]. 

An analogy can be drawn between Eq. (4. 7) and 
the continual generalization of the diffusion equation 
in velocity space. The role of the diffusion coeffi
cient, which is different for different wave com
ponents of the velocity field, is played by the spec
tral force tensor ~ik(p). 

The stationary turbulence mode is defined by the 
equation 1l 

1>we note that in the present article the concept of proba
bilistic averaging is taken here to have a somewhat different 
meaning than used by Hopf["], who took averaging to mean 
averaging over the initial velocity field. In the present paper, 
in the case of the nonstationary problem, averaging is taken 
to mean over the external forces and over the initial velocity 
field, assumed to be independent of the external forces. In the 
stationary problem it remains only to average over the external 
forces, since the information concerning the initial velocity 
field drops out (ergodicity!). Actually, we are studying a sta
tionary mode established by the action of statistically time
stationary external forces, if the liquid was at rest at t = - oo, 
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(4.10) 

It is easy to verify that (3.9) is obtained from (4.10) 
by variational differentiation. If we are interested 
in sufficiently large scales, where the effect of 
viscosity does not yet come into play, then the 
second term on the left in (4.10) can be dropped. 
In the limiting case, when L- co, we have 

:Lo=-; (~yk(x)d3xf =-; zk2(0). (4.11) 

In this case Eq. (4.10) contains only two dimen
sional parameters, E and v, which, in accordance 
with Kolmogorov's hypothesis [ 3], define the small
scale turbulence mode. Equation (4.10) can be used 
to investigate the intermittence of turbulent flow, 
but the approximation (5.1) is no longer applicable 
in this case, since intermittence is characterized 
not only by the magnitude of the flux E but by addi
tional parameters L 9]. 
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