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Possible experiments are discussed for the study of the weak interaction in electron-electron 
and electron-positron colliding beams at energies of the order of 100-1000 BeV, for which 
the weak interaction becomes a strong one. The main results of this work are given in a 
table and are those for processes 9-12, which occur in the second order of perturbation 
theory with respect to the weak interaction and are described by the diagrams of Fig. 2. 

J T is well known that cross sections caused by 
the weak interaction increase with increasing 
energy. In the interaction between leptons and 
nucleons this increase is evidently ''cut off'' at 
energies of the order of 1 BeV by the form-factors 
caused by the strong interaction. In the interaction 
between leptons and leptons this increase should 
continue up to E ~ 103 BeV (where E is the 
energy of each of the colliding particles in their 
center-of-mass system), provided that a form­
factor of the weak interaction itself does not begin 
to manifest itself at smaller energies. Such a 
form-factor could be caused, for example, by the 
intermediate W meson, if it exists .. An experimen­
tal study of the weak interaction under conditions 
in which it is strong would be extremely valuable, 
since it would provide a possibility for obtaining 
information about the dependence of the weak­
interaction vertex on the energy and the momentum 
transfer. 

In this paper we calculate the cross sections of 
a number of inelastic processes caused by the 
weak interaction, and discuss the possibilities for 
experimental observation of these processes. We 
shall start from a point four-fermion structure of 
the weak interaction (assuming that there is no 
W meson), and shall assume that the standard 
"square of the charged current" scheme holds. 
The table lists a series of reactions caused by the 
weak interaction. Some of them (1-5), which occur 
in the interaction of neutrinos and photons with 
electrons, have been treated earlier and discussed 
as conceptual experiments by a number of authors. 
[ 2-s] Unfortunately, energies of the order of 100-
1000 BeV are practically unattainable in processes 
1-5. In fact, in order to have an energy E ~ 103 

BeV in the center-of-mass system, neutrinos (or 
photons) with laboratory energies of the order of 

109 BeV would be required. 
We would like to emphasize that there are much 

more realistic prospects of studying weak inter­
actions at energies ~ 103 BeV with colliding elec­
tron beams. 

In this paper we consider the behavior at ener­
gies 102 - 103 BeV of a number of weak processes 
which can occur in e+e- collisions (processes 
6-11) and in e-e- collisions (process 12). !) Let 
us briefly discuss these processes. Unfortunately 
it is practically impossible to observe process 6, 
which occurs in first order in G. 

The photons produced in process 7 are essen­
tially like bremsstrahlung and are emitted along 
the directions of the momenta of the colliding elec­
tron and positron. Therefore it is hard to distin­
guish them from the photons that accompany the 
M¢ller scattering of electrons by positrons. The 
possibility of distinguishing the photons from 
process 7 that emerge at large angles requires 
special treatment and will not concern us here. 

FIG. 1 

Process 8 occurs in second order in G. The 
diagram for this process is shown in Fig. 1. The 
cross section for the process contains an unknown 
cut-off parameter A. Processes 9-12 are free 

l)Some estimates of two-particle weak processes in collid­
ing electron and positron beams at energies of the order of sev­
eral BeV have been given in [8 - 9 ]. 

1281 



1282 IOFFE, OKUN', and RUDIK 

FIG. 2 

from this kind of uncertainty, since the diagrams 
for these processes are of second order in G and 
do not contain closed loops. 2> This enables us to 
make definite predictions of their cross sections 
for E ;::, 100 BeV (of course within the framework 
of the scheme considered here). Figure 2 shows 
the diagrams for process 12. Two analogous dia­
grams describe process 9. There is only one dia­
gram for process 10, and the same is true of 
process 11. It follows at once from dimensional 
considerations that the cross sections for proc­
esses 9-12 are proportional to G4s 3. It is a 
laborious task, however, to calculate the coeffi­
cients. The details of the calculations are given 
in Appendices A, B, and C. 

We have calculated the differential cross sec­
tions in two different ways. The first is the usual 
technique of four-component spinors and projection 
operators, and is briefly described in Appendix A. 
The second is the two-component spinor tech­
nique[!, tO,tt] and is described in Appendix C. This 
method is based on the fact that at high energies 
the leptons are involved in the weak interaction 
through only two components. Therefore, if at the 
start we go over to the two -component way of 
writing the spinors, then the only one among the 
matrix elements for the various polarizations of 
the initial and final particles that is different from 
zero is the one with each lepton polarized in the 
direction opposite to its momentum and each anti­
lepton polarized along its momentum. The calcula­
tion of the differential cross section accordingly 
reduces to the calculation of this one matrix ele­
ment, and there is no need to average over the 
polarizations of the leptons (that is, to take 
traces). The integration of the differential cross 
sections is contained in Appendix B. 

As can be seen from the table and the expres-

2 >As V. B. Berestetskii has remarked, there are also con­
tributions to processes 9-12 from diagrams of order Ge2 (of the 
type of Fig. 3), and at energies E :S 100 BeV the contributions 
of these diagrams are important and exceed those of the dia­
grams of Fig. 2. 

f! 

f! 

FIG. 3 

sions for the total cross sections cr, the numerical 
coefficients of G4s 3 are small (,..., 10-5 ). The re­
sult of this is that in spite of the rapid increase 
with energy the cross sections for the four-particle 
processes 9-12 at energies E of the order of 100 
BeV are still much smaller than that for the two­
particle process 6. 

It is interesting to note that if the increase of 
the weak interactions ceases at energies of the 
order of several hundred BeV owing to a "disper­
sion'' of the vertices, it may turn out that inelastic 
processes of the type of 9-12 will never become 
important. 

To find the values of the energy at which a dis­
persion of the weak-interaction vertices must 
necessarily become apparent, we consider the 
two-particle weak processes 1-4, 6 from the 
point of view of the unitarity of the S matrix. 

A simple analysis (see [!2]) shows that in 
processes 1 and 3 the only nonvanishing wave is 
that with J = 0, and in processes 2 and 4, the wave 
with J = 1. In fact, in the relativistic limit 
E » m the leptons are involved in weak interac­
tions through only two components. Particles 
(electrons, neutrinos) have left-handed helicity, 
and antiparticles (positrons, antineutrinos) have 
right-handed helicity. Since the spin state is fixed 
in this way and, as is well known, the V - A am­
plitude is antisymmetric under the interchange of 
the two initial I or of the two final) particles, it 
follows that in collisions of two particles the only 
contribution to the amplitude is that of the wave 
with J = 0, and for particle-antiparticle collisions 
the only contribution is that with J = 1. 

This can also be verified directly by substitu­
tion of these values of the helicities in the general 
expression for a helicity amplitude [see Eq. (31) 
and Table 1 of the paper by Jacob and Wick[ 12] ]. 

The results are 

da = l/l 2dQ, 
f = T0 (s) I is- for J = 0, 
f = 3/2T1(s)s-'i2(1 +cos it) for J = 1, 

iT = e2i 6 - 1, IT I ~ 2 for elastic scattering, 
T = e2i6 , IT I ~ 1 for an inelastic process. 

The restrictions on the magnitude of T are due 
to the requirement that the S matrix be unitary. By 
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ci 
z 341 

·C 
Process a Om ax E 0 , BeV a100 X 10 , Refer-

em' I ence 

" rn 

G2s S:rt 
1 vee----)> vee- - - 440 6.5 [•-•] 

:rt s 

- - G2s 24:rt 
2 vee-- vee- -3n - 720 2.2 [2-4] 

s 

G2s 2:rt 
310 3 vf'e- ~ VefL- - - 6.5 [2-4] 

:rt s 

- G2s 6:rt 
4 vee-~ Vf'fL- 3:rt 

- 540 2.2 [H) s 

- cxG2s s 
5 1e- ~ fL-Vf' ve -l;n-

36:rt2 m~ 
6·10-3 [5-7] 

6 e+e-- veVe G2s 3:rt 1.1 
6:rt 

- 540 s 

cxG2s s s 
7 e+e-- veVer --2 In 2 In - 2- -0.1 

6:rt me 4wmin 

G2s G2A 4 4:rtcx 
E~ = 160 [8, •• 18] 8 e+e- ~ fL +fL-

6:rt (2:rt) 4 Gel =:38 1.1·10-2 

9 e+e--> e+fL-vevf' G•ss [ 7 J 
(2:rt)545 24 + 10 - :n:'_ 4.2·10-•1 

- G1s3 1 
10 e+e--> f-L+fL-vpvf' (2:rt) 545 6 1.6·10-• 

e+e- ~ fL+fL-VeVe 
G•ss 1 

11 (2:rt)545 8 1.2·10-B 

- G4 s3 1 + 10- :rt2 
12 e-e--> fL-e-vf' v 8 (2:rt)"45 2 

5.5 ·10-6 

Remarks. a is calculated in first orderinG for 1-4, in first orderinG and e for 5, 7, 
and in second orderinG for 8-12. G ~ 10-5 /m~, e 2 ~a~ 1/137. 

Omax is the maximum value of the cross section for the two-particle reaction occurring 
in the channel with total angular momentum J ~ 0 (processes 1 and 3) or J ~ 1 (processes 
2, 4, 6). E 0 is the energy at which amax X a 100 is the value of a at energy E ~ 100 BeV, 
where E is the energy of each of the colliding particles in the c.m.s.; s = 4E2• 

For process 7 a is calculated on the assumption that In (s/m~) >> 1. Wmin is the min­
imum photon energy detected in the experiment. a 100 is calculated for the case 4w:nin/s = 
10-2 • 

For process 8 Gel is the cross section for the electromagnetic conversion e -e + ---)o Jl-Jl+ 
(see [14]). E 0 is the energy at which a= ael· The quantities E; and a 100 for process 8 are 
calculated on the assumption that GA2 /(2rr)2 = 0.1, where A is the cut-off parameter. 

using these restrictions we easily get the maximum 
values O'max of the cross sections, which are given 
in the table. In accordance with the procedure for 
obtaining the cross sections 0', the values O'max 
are obtained by averaging over the initial polariza­
tions of the electron ( and positron), while there 
is of course no such averaging over states of the 
neutrinos. The table also gives the energy E 0 at 
which increase of the cross section comes into con­
flict with the unitarity condition. For E ~ E 0 fur­
ther terms of the perturbation-theory expression 
for the scattering amplitude become important; the 
effective interaction is no longer a point interac­
tion, and states with higher orbital angular momen­
ta come into play. We see that the energy E 0 is 
different for different vertices and lies in the 
range 300-700 BeV. At energies of the order of 
500 BeV the cross sections for processes 9-12 
are of the order of 10-36 cm 2, and thus are still 
extremely small ( ~ 10-3 ) as compared with the 
cross sections for the two-particle processes 

(1-4, 6). Possibly the smallness of processes of 
the type of 9-12 means that the dispersion of the 
weak interaction is mainly due to two-particle 
virtual states (in both the s channel and the t 
channel). 

Measurements of cross sections of the order of 
10-36 cm 2 at E ~ 500 BeV are about three or four 
orders of magnitude beyond present experimental 
possibilities both as to energy and as to beam in­
tensity. 3l The suggested experiments, however, 

3 )As is well known, experimental colliding-beam apparatus 
is being constructed at a number of laboratories (Novosibirsk, 
Stanford, Frascatti, and so on). The possibilities of these in­
stallations can be judged, for example, from the following data. 
Experiments are now being begun with the Frascatti storage 
ring at energy E = 250 MeV and effective intensity 6 x 1030 

cm-2 hr-• (counting rate 6 events per hour at cross section 10-30 

em'). In 1965 a storage ring with energy 750 MeV and intensity 
1033 em-• hr-• is to come into operation. There is a project for 
construction at Brookhaven of a 70 BeV electron accelerator 
(in this connection see the survey lectures ["]). 
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are not absolutely unrealistic, unlike experiments 
with neutrino beams at energies of 109 BeV. Of 
course if the W meson is observed experimen­
tally, it may be that energies much smaller than 
those we have been considering will suffice for the 
study of the dynamics of the weak interaction. 

The authors are grateful to A. D. Dolgov, I. Yu. 
Kobzarev, and I. Ya. Pomeranchuk for helpful dis­
cussions. 

APPENDIX A 

CALCULATION OF THE MATRIX ELEMENTS 

Let us consider the two diagrams M7 and M8 

( Fig. 2) which describe the weak interaction of 
leptons in second-order perturbation theory. The 
correspondence between the indices of the diagrams 
in Fig. 2 and the particles involved in processes 
9-12 is as follows: 

process 9 

e+ e--+ e+ J.l- 'Ve :v;. 
41 3265 

process 10 

e+ e--+ J.t+ J.t- v" ~ 
41 3265 

process 11 

e+ e--+ J.t+ J.t- 'Ve Ve 
23 1465 

process 12 

e- e--+ e- Jl- 'Ve vl'-
13 4265 

Processes 9 and 12 are described by the differ­
ence of diagrams M7 and M8; processes 10, 11 
are described by diagram M7 alone. 

The matrix elements M7 and M8 (for which 
we use the same symbols as for the diagrams of 
Fig. 2) can be written out in the following way: 

M1 = 1/2G2!i20;ut· lia0~tP7P7-20{as· u40~tua, 

where Oi = Yi ( 1 + y 5 ), and the masses of all par­
ticles have been set equal to zero. 

In the calculation of the squares of the matrix 
elements it is convenient to introduce the following 
notations (cf. [ 4J, pages 36 and 70) 

'Xilhm = t;zkm + ie;zhm, 

and to use the relation 

Vi'\'lt'V! = [ takm + iBilkm'\'sJvm, 

ViWVz(1 + Vs) = x\z~tm'\'m(1 + Vs) = 'X.!ill.m'\'m(1 + Vs), 

Vi'\'1t'\'z(1- vs) = 'Xilhm'\'m(1- Vs). (A.3) 

In the approximation in which the masses of all 
leptons are set equal to zero we get for the squares 
of the matrix elements: 4> 

21ac4 
I M1l 2 = - 4- (PtPs) (P4Pa) [2(P2P7) (PaP7)- P72(P2Ps) l 

P1 
== 21aG4I gn7 12, 

21ac4 
I Msl2 = - 4- (PsPs) (P4Pa) [2(PtPs) (P2Ps)- Ps2(PtP2)} 

Ps 

where 

== 213G4JIDlsJ2, 
ztsG4 

M1Ms* + M7*Ms = - ~- Re [Xallvv'X.a'll'v'v} 
P72Ps2 

X (P4Pa) (PtaPa11PsvPwP711'P2v' == - 213G4ID27s, (A.4) 

JMJ2 = JM1I2 + iMsi2 +M1Ms*+M1*Ms 
= 213G4 l m 12 = 213G4 [I ID2712 +I ID2sl2 - ID27sl· (A.5) 

The expression for the total cross section for 
the process described by the diagrams 7 and 8 is 
as follows (the process is regarded as occurring 
according to the scheme 1 + 3- 2 + 4 + 5 + 6 )5>: 

(2 4 5 6) _ G4 \ dp2 dp4 dps dpa (A. 6) 
a ' ' ' - 4:rt8s ) E2 E 4 E 5 E 6 

X J IDl 12<1' (Pt + Ps- P2- P4- Ps- Ps) = Cl7 + Cls - Cl7s• 

where s = 2p 1p3 = 4E 2. 

APPENDIX B 

CALCULATION OF THE TOTAL CROSS SECTIONS 

Process 12: 

e- e--+ 11- e- v,. 'Ve. 

1 3 2 4 5 6 

It is easy to see that for this process a 7 ( Jl-e-v!l ve) 
= CTa(J.t_e_vJ.tve) (the squares of the matrix elements, 
I ID2 7 12 and Jrol 8 j2, differ only by the interchange 
p 1 ~ P3). The calculation of CT7 is made as follows. 
We introduce the variables Q = p 2 + p5 and R = P4 
+ Ps; then Q + R = Pt + P3• P7 = Pt - Q = -P3 + R, 
and Pa = P3 - Q = - Pt + R 

4)The sign in the expression for M7M0* + M7M8 allows for 
the fact that the difference of M7 and M8 is used. 

S)The average over spins of the initial leptons has been 
taken. 
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we transform the expression for a 7 to the form 

( --- ) G' ('d'Q R2[2( ) t 1 n: 
a1 1.1. e "~'-"• = 16:rt8E2 ) p7' :Jt PsP1 P1rz- P1 Psrz P1~ 6 

X [Q2~"~ + 2QrzQ~l· (B.2) 

When we use the relations 

P1P1 = 1/2(P12 - Q2) = -p1Q, P1Q = - 1/2(Q2 + P12), 

PsP1 = 1/2(R2- P~) =paR, PsQ = P1Pa + 1/2(P12 - R2), 

we have 
(B.3) 

--- G4 d4Q 
<11(J..L e 'Vp.Ve) = --- \ --{- Q4R4- 2(QR)p 2Q2R2 

96:rt6E2 J P74 7 

+P74((P1Pa) -Q2)R2}. (B.4) 

In the center-of-mass system of the colliding 
electrons the four-vectors p1, p3, p7, Q, R take the 
following forms: 

P1 = {E, E}, Pa = {E, -E}, 

Q = {w1, q}, R = {w2, -q}, 

P7 = {E - W1, E - q}' W1 + W2 = 2E 

and p~ == -QR + 2Eqx, where x is the cosine of 
the angle between the vectors E and q. The inte­
gration over the angle cp gives the factor 27r; the 
integration over x is between the limits - 1 :s x 
:s + 1; the integration over q is between the limits 
0 :s q :s E; and that over w1 is between the limits 
q :S Wt :S 2E - q. 

We now give the integrals over the angular and 
energy variables which are encountered in our 
further calculations ( L stands for the expression 

L = ln (w1 + q) (w2 + q) ). 
(w1- q) (w2- q) 

Setting 

+1 
l(f) = ~ jdx, 

-1 

we have 

/(p74) = 2fa[3(QR)2 + 4E2q2], /(p72) = -2(QR), 

/(1) = 2, J(p7- 2) = -L/2Eq, J(p74 ) = 2/Q2R2 (B.5) 

and, setting 

E 2E-q 

J(cp) = ~ dq ~ q2dw1cp, 
0 q 

we have 

/(Q4) = ~EB J [ Q2R2(QR)L ]= _iEB l[(QR)2] = 14 EB 
15 ' Eq 15 ' 45 ' 

'{ W22[(QR)- 4E2]L} =- 263 
q 90 E7, 

/[ 002aro1 LJ = ( n;2 + ~) Es 
q(QR) 15 8 . 

(B.6) 

The method for calculating the last integral re­
quires particular attention. Here it is convenient 
to change the procedure even before doing the in­
tegration over x, and to choose as variables of in­
tegration the components of the four-vector 
P7 == { w, p}. In these variables the integral J d4Q 
is converted into the integral 

E 2E-lOlJ X 

S d4Q = ~ dro ~ p2dp ~ dx', 
-E \Ol\ -i 

x = ro2-p2-2E I ro I 
2Ep 

where x' is the cosine of the angle between the 
vectors p and E. The specific integrals for 
which this method must be used are 

(B.7) 

After we introduce the variables z = w + p, y = w 
- p and perform the integration over x' 

r dx' _ 1 In y+2E 
~1 Ps2 - 4Epzy y- 2E (B. 8) 

the first of these integrals is reduced to the form 6 ) 

E3 ° dy y + 2E 2E 2E dz 0 y + 2E } 
F1 =s-{ ~ y-1ny- 2E ~ dz-~ z~ dyln y- 2E . 

-2E -y o -z 
(B.9) 

The integrals that appear here are elementary or 
are given in tables. 7) 

The integral F2 is calculated in an analogous 
way, except that the orders of integrations over y 
and z have to be changed in a suitable way. The 
results are 

(B.10) 

Using (B.5) and (B.6), we get as the final expres-

6 )We have h-;re made use of the fact that the integrand is 
an even function of w. 

7)See, for example, [15), formulas 4.291 (1,2). We note, by 
the way, that the expressions for the indefinite integrals 
2.729 (1,3) are incorrect [in the coefficient of ln (a+ bx) the a 
should be changed to -a). 



1286 IOFFE, OKUN', and RUDIK 

sion for rJ7 (f.!_e_vf.!ve): 

0'7 (1-t-e-,-;-;.v.) = G4E6 I 90n5• (B.ll) 

The expression for rJ78 (f.!_e_vf.! lJe) is of the form 

cr78 = ~ I dp2dp,dpsdP6 PiaPs~PsvP8a'P7~'P2v' 
16n8E2 J E2E.EsE6 P12P82 

XRe[xa~vvXa'~'v'v] b' [pi+ Ps- P2- P4- Ps- P6]. (B.l2) 

Introducing the quantities Q and R as before, we 
transform rJ78 to the form 

XPiaPs~ (Ps - Q) a' (p1 - Q) ~· [ta.~vvta'B'v'v- 8aBvv8a.•B•v,v]. 

(B.l3) 

Summation over a, {3, y, a', j3', y' leads to the 
expression 

- G• n2 I R2 
0'78(!-t-e-v .. v.) = 16 8£ 2 -6 J d'Q2"?: {8Q2(piQ) (p3Q) 

n P7 P8 

+ 8Q2(PiPs)2- 4Q2(PiPs) (PiQ)- 4Q2 (PiPs) (PsQ) 

- 2Q'(PiPs)- 8 (PiPs) (piQ) (psQ)}. (B.l4) 

After the integration over the angle variables 
we have 

(B.l5) 

The values of the integrals which appear here 
are given in (B. 6), and the final result for u-78 is 

_ G4Es 
a78 (f.ce-v~'-v.) = 45n5 (n2 -10). 

Process 9: 

e-e+--+ f.l- e+ v~'- v. 
14 2 3 56 

For this process rJ7 (J.!-e+vf.!ve) "'rJa(f.!-e+1JiJ.ve). 
We first consider the expression for rJ7: 

a (f.l-e+v v ) _ ~ \ dp2dpadpsdPs (PtPs) (P4Ps) 
7 ~'- • - 16n8E 2 J E2EaEsEs P14 

We introduce the variables 

Q + R'·= Pt + P4 

and make rJ7(f.!-e+1Jf.!ve) into an integral over Q: 

- +- - G4 n2 \ d4Q 2 
a7 (f.l e vi'-ve)- 16nB£236 ~ P74 Pta.P4a.'(Q ba/3 + 2QaQ{3) 

X (R' 2f'J~'/3' + 2R'a.·R'w) (2P7/3P7/3'- P72f'JI3/3') 

-~ n2 \ d4Q { 2Q4R'4 4 2Q2R'2 (QR') - 16n8E2 36 J p74 - - P1 

+ P14 [ 2 (PtP4) (Q 2 + R'2)- } Q2R'2 J 

- P16 (QR')- } P18}. 

Using (B.5) and (B.6), we finally get 

a7 (f.l-e+v~"ve) = G4E 6j135n5 • 

The expression for rJ8 (f.!-e+vf.!ve) is 

a (f.l-e+v v ) = ~ \ dp2dpadpsdPa (PaPs) (P4Ps) 
s ~'- e 16n8£2 ~ E2EaEsEa Ps4 

X [2 (P2Ps) (PtPs)- Ps2 (PtP2)] 

X b4 (Pt + P4- P2- Ps- Ps- Ps)· 

(B.l6) 

(B.l7) 

Using the fact that p3 + p 5 = p8 - p2 and inte­
grating over dp 5 and dp8, we get 

( _ +- G4 \ dp2dPs (Ps - P2)2 

as f.l e v~'-ve) = 16nB£2 n J E2Es Ps4 [2(P2Ps)(PtPs) 

(B.18) 

Let us consider the integral 

(B.l9) 

It must obviously be of the form Ap~Paa. We 
find the constant A by calculating the integral in a 
system in which p8 = 0 (the limits of integration 
are 0:::: E 2 :::: E8/2): A= JT/24. Then 

- G4 n2 I dp 
as(f.l-e+v~'-ve) = 16nB£2 24 .l }_,·: (P4PsHPtPs)Ps2 • (B.20) 

Using the fact that p8 = p 1 + P4 - p6 = P - Ps• we 
calculate the remaining integral: 

I 2 dps nP4 6P p p2-" 
.) Ps P6a.Psf3 Es = 240 [ a.. (J + vaal (B. 21) 

and we finally get 

as (f.l-e+vp.ve) = G4E 6j180n5 • (B. 22) 

Let us now consider the expression for 
rJ78 (f.!-e+vf.!ve). After integrating over the variables 

P2 and Ps ( Q = P2 + Ps = Pt + P4 - P3 - Ps• P7 = Pt 
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(B. 23) 

[the expression in the curly brackets is obtained 
from the corresponding expression for 
CJ78 (f.J._e_Tif.J.ve) by changing the sign of the whole 
expression and the sign of p3 ]. We now do the in­
tegration over dp3. For this we choose a system 
in which p8 has only the fourth component: E 8 

==- M. In this system Q2 = M ( M - 2E 3 ), 

(PtPs) = EtEa (1- x), PsQ = EsM, 

(p1Q) = E1M- E 1Es(1- x), 

p12 = (p1 - Q)2 = M 2 - 2M (Et + Ea) + 2E1E3 (1- x), 

(B. 24) 

and the limits for the integration over dp3 are: 
0 s E 3 s M/2; - 1 s x s 1 ( x is the cosine of the 
angle between the vectors p1 and P3). 

We put the resulting expression in covariant 
form by making the replacements 

M 2 -+Ps2, EtM-+-(PJPs), Et2-+(PtPs)2/Ps2 • 

The result is then 

matrix element M7: 

+ _ - G4 · 1 dp1dp4dp5dps 
Ci (t-t f1 v.v.) = 16n8E2 .\ E 1E 4E 5E 6 

X 64 (p2 + Ps- Pt- P4- Ps- Ps) 

X __;._ (PtP5) (P4Ps) [2 (P2P7) (PsP7)- P12 (P2Ps)]. (B. 28) 
P1 

Introducing the variables Q' = Pt + P5 = P2 - P7• 
R' = p 4 + p6 = p3 + P7 and transforming the integral 
into an integral over Q', we have 

---~~ d4Q' -Q'2fl12_ ---G4 2 { Q'2fl'2 (Q'R') ,Q'4fl'4} 
-16n8E2 2 .\ '2P72 P14 • 

(B.29) 

When we now use the integrals IB.5) and (B.6), we 
get finally 

(B.30) 

APPENDIX C 

THE TWO-COMPONENT METHOD 

At high energies, when the lepton masses can 
( _ +- ) G4 n2 (' dps ( ){(PtPs) Ps2 +2 ( )2 be neglected, it is especially convenient to use the 

Ci78 f1 e vl'-v• = - 16n8 E 2 3.\ Es p4 p6 2 PtPs two-component way of writing spinors [ 1' 10 ' ii] 

2 ( )2 [2(PtPs)+ 1 ] 1 Ps2 +2(PtPs)}· 
- PtPs Ps2 n 2 (PtPs) (B. 25) 

The integration over dp6 can be done in an ele­
mentary way in the center-of-mass system of 
particles 1 and 4. The final result is 

( - +- '2G4Es( 2 10) Ci7s f1 e vl'-ve)=~ n- . (B. 26) 

The cross section for the process e-e+ 
- f.J.+ e- vf.J.Ve is equal to that for e-e+- f.J.-e+vi-L ve, 
since these are charge-conjugate processes. 

Process 10: 

This process is described by the single matrix 
element M7. It is easy to see that 

a (t-t+11-v~'-v~'-) = cr7 (e+f1-v.(Vl') = G4E 6f135n5 • (B. 27) 

Process 11: 

e+e---+ J.l+f.l-VeVe 
3 2 1 4 6 5 

This process is also described by the single 

¢(x) = u(x)+ v(x), 
1 

u(x) = 2 (1 + '\'5)¢(x), 

1 
v(x)= 2 (1-v5)')l(x). (C.1) 

The two-component spinors u ( p) satisfy the 
equation 

(E + ap)u(p) = 0 (C 2) 

(where a is the two-row Pauli matrices), and for 
E > 0 this is 

(1 + crn)u(p) = 0, n = p/ IPI (C.3) 

and has the solution u = (~),which describes the 
state of the lepton with spin projection Sz = - 1/ 2 

( the z axis is along the momentum). 
If we introduce the matrix four-vector 

~~t =' {1, -cr}, (C.4) 

Eq. (C.2) can be written in the form 

P~t~!lu = 0. (C.5) 

Besides the four-vector tl-' it is convenient to use 
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also the four-vector I/1- given by 

~ .. = {1, a}. (C.6) 

We note some properties of the matrices SJ.L 

and 7;/J- which follow immediately from the defini­
tions (C.4) and (C.6): 

~11~11 = ~11~11 = -2, 

~11~" + ~"~11 = ~11~" + ~"~11 = 21111"' 
~ 11~. ~11 = - 2~"' E11~AE11 = - 2EA, 

~11~AEP~11 = ~11~A~PE11 = 4/IAP• 

~11~ .EA = xi1YAaEa. ~11~Y~A = x:AYO~a· ( c 0 7) 

In concrete calculations it is convenient to use 
a number of identities which hold for the tensor 

XJ.LA VI]'; . . 
XJ.Li>Va = /CAJ.I\'0' x .. Ava = X11~>av, x .. ~va = Xva,.~ • . x .. ~VT/Ctpax = X YOATXJ.LPTX = /C~>pmXJ.Lwx, 

XJ.Li>VT/CTvax = 4lhall,.,., XJ.Li>VT/CTPJ.I" = 4/lvl.ilpx, 

These identities can also be obtained easily if we 
write out the products of sets of matrices {;J.L and 
[J.L in different ways by using the last of the formu­
las (C. 7). 

The equation (C.5) has a corresponding Green's 
function G ( p) , 

In terms of two-component spinors the matrix ele­
ment of the weak-interaction Hamiltonian 

can be written in the form 

4 G_ (u~·~,.uz)(ua·~,.u,). 
1'2 

(C.10) 

We shall take the spinors u normalized with the 
condition u+u = 2E. Then in the calculation of 
transition probabilities the normalization constants 
will be chosen in the usual way, i.e., Ni = ( 2Ei )-1 

for each of the particles in the initial and final 
states. 

Let us consider some properties of the matrix 
element 

(C.ll) 

which appears in the four-fermion interaction. We 
shall suppose first that u ( p1) and u ( p2) describe 
lepton (not antilepton) states. It is obvious that 

Pt.J,.(pz, Pt) =p2,./,.(p2, Pt) =0, (C.12) 

t .. (pz, pi) = //(Pt, P2), /,.(p, p) = 2p,.. (C.13) 

If the vectors p1 and p2 are such that 
( p 1 + p2) 2 > 0, then in the Lorentz system in which 

P1 = {Po• Px• Py• pz} = E1{ 1, 0, 0, 1}, 
p 2 = E 2{ 1, 0, 0, -1} the function fJ.L ( P2• P1) is of 
the form 

(C.14) 

In order to find f J.L ( p2, p 1) in an arbitrary refer­
ence system, instead of using the formulas for the 
transformation of spinors we can write the proper­
ties (C.14) (sic) in the form of a system of invari­
ant equations-;;:-nd find the fJ.L that solves this sys­
tem of equations. Besides ( C .12) and ( C .13) this 
system contains the equations 

M = 0, (Re/,.) 2 = (Im/,.) 2 = -2(PtP2), 

Re/,.· 1m/,.= 0, 
e,.vi.uRe/,. ·lm/v • Pt~>P2a = 2 (PtPz)2. (C.15) 

For the special case in which the momentum p1 

is directed along the z axis and the momentum 
p2 ( I p2l = I p 1 I ) makes the angle e with this axis 
we find from (C.12), (C.13), (C.15) the result 

{ a . a .. a a} /,.(pz,Pt)=2Et cos 2 , sm 2 , -'sm 2 , cos-2- . 

(C.16) 
By means of ( C.16) we can, for example, obtain 

at once the expression for the matrix element for 
scattering of neutrinos by electrons: 

Mv+e = 4 ~ · (ue" (pzg,.ue(Pt)) (Uv" (P4)b,.uv(Pa)) 
1'2 
G 1 

= 4---=/,.(pz, Pt)/,.(p,, Pa) =- 32---=-GEZ, (C.17) 
1'2 i2 

if we recall that in the center-of-mass system of 
the electron and neutrino the initial momentum of 
the neutrino is p3 = -p1 and its final momentum 
is P4 = - P2• so that f J.L ( p4, p3 ) is obtained from 
f J.L ( p2, p1) by the substitution e -- 'II' - e. 

The case of antileptons differs from that of 
leptons only in that the creation operators corre­
spond to the spinors u in the interaction Hamil­
tonian and the spinors u* contain the annihilation 
operators [the sign of p drops out of Eq. (C.5) ]; 
that is, for antileptons the order in which the 
momenta are written in fJ.L ( p1, p2) is opposite to 
that for leptons. For example for the matrix ele­
ment for scattering v + e - iJ + e we have by 
(C.13): 

M-;;.. = ~~/11 (p2, PI) / 11 (Pa, p,) = -16 ~2 GE2 (1 +cosO). 

(C.18) 

From Eqs. (C.13) and (C.15) it is not hard to 
derive the practically important formula 
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(C.19) 

by means of which calculations of the squares of 
matrix elements can be done conveniently. 
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