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A formula is obtained for the dependence of the lifetime of a quasistationary state on the pre
cise value of the energy. 

THE problem treated in this note arises in the 
following way. Suppose that in the scattering of 
particles there is a resonance with width r, located 
at energy E0• We want to know the lifetime T of the 
quasistationary state as a function of the energy E 
of the scattered particle. There are several ap
proaches to this question. 

1. One approach is based on the work of 
Wigner. [J] Let us consider a wave packet, scattered 
by a potential of radius R. For r > R we have 
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where o is the scattering phase. The center of 
gravity of the incident packet is determined by the 
condition that the phases of the two terms in the 
incident wave be equal (in which case the amplitude 
of the wave function is a maximum). This gives for 
the law of motion of the packet incident on the 
scatterer: 
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li- r + t === - + t = 0. 
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For the scattered packet we get similarly 

r 2 dll 
--t+--=0. 
v v dk 

From these formulas we see that the incident 
wave reaches the edge of the potential at the time 
T1 = - Rlv, while the scattered wave passes this 
point at the time T 2 = Rlv + (2lv)do I dk. The differ
ence of these times 

is the lifetime of the state formed in the scattering. 
Near resonance, 

ll = tan- 1 [r I (Eo- E)], 

and we get, neglecting the time of passage Rlv, 

The lifetime reaches a maximum T(E0) = 2nlr for 
E = E0, and falls off according to the Lorentz law 
as one moves away from the center of the reson-
ance. 

2. A second approach is based on the following 
model. 

Let us consider a potential with a barrier, within 
which and in some small neighborhood of which 
there is a magnetic field H directed along the z 
axis. Suppose that we scatter particles of spin 1 I 2, 

polarized along the y axis. The equation has the 
form 

2muazH ( 1 0 ) 
q/'+(k2-v)cp=- ft2 cp=-a 0-1 cp, 

2m11H 
a=~, 

where cp stands for the column vector cp = (::)and 

1-t is the magnetic moment. 
We shall assume that H~-t - 0, so that we can 

use perturbation theory. The zeroth approximation 
gives 

cp(O) = X~t(r) ( ~)' X~< """' V] sin(kr + ll). 

In the next order of perturbation theory we have 

We have stopped the integration at the radius R of 
the potential, since near resonance x~ is very 
large inside the barrier, and the integration over 
the whole region where the magnetic field is located 
can be replaced by an integration over the interior 
of the sphere r < R. 

The total wave function for the outgoing wave 
has the form 
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1 ( i - ~ \ ei(kr+O)---=- I 
il'2n 1 -i~ J 

This wave function corresponds to a rotation of the 
spin through an angle 2{3 around the z axis. Near 
resonance 

We obtain the angle of rotation 

2r 
'l't = 2(3 = 2r,tH (E- Eo)z + p' 

Dividing this expression by the Larmor frequency, 
we again get for the lifetime the familiar formula 

'it 2/i f 2 

T(E) = 2r,tH/fi = f (E- Eo)2 + f 2 

It is a pleasant duty to express my gratitude to 
Ya. B. Zel'dovich for numerous discussions. 

1 E. P. Wigner, Phys. Rev. 98, 145 (1955). 
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