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The intensity ratios of single-particle transitions in deformed odd nuclei are considered. It 
is shown that the corrections to the nuclear wave functions resulting from the interaction 
between the rotation and the intrinsic motion can explain the observed deviations from the 
Alaga rules and the difference in the behavior of the transitions with ~K = 0 and ~K = ±1. 
The theoretical calculations agree with experimental results. 

IN axially deformed atomic nuclei the intensities 
of electromagnetic transitions between levels of 
two rotational bands should be calculable by sim­
ple rules established first by Alaga, Alder, Bohr, 
and Mottelson. [1] In a number of cases, in particu­
lar for collective and for allowed single-particle 
transitions, these rules are quite well fulfilled. 
However, in transitions which are forbidden be­
cause of the asymptotic quantum numbers, the 
deviations from the Alaga rules are quite consid­
erable and reach two and even three orders of 
magnitude. At this time no satisfactory explana­
tion exists for this discrepancy. In particular, it 
is not clear why for electric dipole transitions 
with ~K = ±1 these discrepancies are large while 
for ~K = 0 they are unimportant ( 10-20% ). 

It is natural to suppose that the deviations from 
the Alaga rules are caused by the interaction of 
the internal motion with the rotational motion, i.e., 
by the Coriolis forces. Since this interaction is 
small in strongly deformed nuclei it will influence 
the probability of allowed transitions but little. 
However, for the forbidden transitions the influ­
ence of this effect can be relatively large and can 
result in the above discussed deviations from the 
Alaga rules. The matrix elements of the for­
bidden transitions are very sensitive to the choice 
of the single particle level scheme. Therefore the 
calculation of this effect based on an arbitrary 
single-particle model of the nucleus [2] is not very 
convincing. If the deviations from Alaga's rules 
are due to the Coriolis forces then one can show 
that in first order of perturbation theory the inten­
sities of transitions between levels of two rota­
tional bands depend on two parameters, sometimes 
even only on one. These parameters, which depend 
on the internal motion, can naturally be determined 
from experiment. 

Since it is not possible to exclude other rea­
sons for the deviations from Alaga's rules, a 

comparison of experiment with the theoretical 
formulae will be able to determine whether the 
proposed effect is the main reason for the ob­
served discrepancies. The actual parameter 
values which depend on the internal motion, can 
be computed on the basis of particular nuclear 
models. 

The wave function of a deformed nucleus has 
the form [3] 

( 21 + 1)'/, 1 I IMKn) = 16:n:2 [DMK (8) IPnK 

+ (-1)1-3 D1-K (9} 'Pn-K], (1) 

where I, M, and K are the total angular momentum 
and its projections on the z axis in the laboratory 
system and on the symmetry axis in the intrinsic 
system respectively, nL:K (e) is Wigner's func­
tion of the Euler angles e which describes the 
rotation of the nucleus as a whole, <PnK is the wave 
function of the intrinsic motion with n and K its 

A 

quantum numbers, and j is the operator of the in­
trinsic angular momentum. 

The separation into collective and intrinsic 
motion holds only in zeroth approximation in 
terms of the angular velocity. The Coriolis forces 
lead to an interaction between the rotation and the 
intrinsic motion. The Hamiltonian for this inter-
action has the form 

(2) 

A 

where j is the single-particle angular momentum 
operator and J is the moment of inertia of the 
nucleus. 

We begin by considering qualitatively the con­
ditions for which (2) can lead to significant devia­
tions from the Alaga rules, and take E1 transi­
tions as an example. To this end we have to 
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Table I. Asymptotic selection rules 
for El and Ml transitions 

Multi- Transi-
polarity l>K tion flN !>nz flA fl~ 

of transi- operator 
tion 

+1 X+ iy ±1 0 +1 () 
£1 -1 x-iy ±1 0 -1 () 

0 z ±1 ±1 () 0 

+1 l+ 0 ±1 +1 0 
-1 l - 0 ±1 -1 () 

M1 ±1 s± () () 0 ±1 
0 sz; I z 0 () 0 

Note: 6.N, fut 2 , /\A and 6.K are the changes 
of the principal quantum number, the oscillator 

quantum number along the z-axis, and the pro­
jections on the z-axis of the orbital and the 
total angular momentum respectively. 

0 

choose a transition which is forbidden by virtue of 
the asymptotic quantum numbers. However, this 
condition is by no means sufficient. It is neces­
sary that the operators MLv and j have allowed 
matrix elements for the admixed transitions. 
This is not always the case, and as a result devia­
tions from the Alaga rules are observed only in 
particular forbidden transitions. To understand 
this we consider the selection rules for dipole 
transitions associated with the asymptotic quan­
tui_!l numbers [4] and with the operator j± = z± 
+ s± ( l is the orbital and s the spin angular mo­
mentum of the nucleon) which connects the in­
trinsic ground state wave function with the ad­
mixed wave functions [5] (see Tables I and II). The 
asymptotic wave functions I NnzAI: ) (where N is 
the principal harmonic-oscillator quantum num­
ber, nz is the oscillator quantum number along 
the z-axis, A and L' are the projections of the 
nucleon orbital and spin angular momentum on the 
symmetry axis of the nucleus) have been given by 
Nilsson [S]. They are the solutions of the wave 
equation for the Nilsson potential in the limit of 
large deformations. 

The most common electric dipole transitions 
forbidden because of the asymptotic quantum num­
bers can be divided into the following groups, ac­
cording to the changes in the quantum numbers: 

Group 1: 

f'..K=O f'..N=±1 ~n2 =±2 f'..A=+1 !'-.~=1 

Group 2: 

f'..K= ±1 f'..N= ±1 !J.nz = ±2 !'-.A= ±1 !'-.~=0 

Group 3: 

!J.K=±1 f'..N=±1 f'..nz=±1 f'..A=O 

As can be seen from Table I, all these transi­
tions are forbidden by two orders while the transi-

Table II. Asymptotic selection 
A 

rules for the operator j±. 

flK I Opera-~ tor !>N 
I !>nz 

I flA I M.: 

+1 

I l+ 

I 
0 

I 
±1 I~~ I 

() 

-1 I 0 ±1 0 
±1 s± 0 0 ±1 

Note: /Si is the change of the pro-
jection of the spin on the z-axis. 

tion elements calculated in the Nilsson scheme 
are forbidden only in first order. In Table III are 
given the changes in the asymptotic quantum num­
bers in the matrix elements of the admixed tran­
sitions for each group of nuclei. The matrix ele­
ments of j are allowed for these transitions as 
far as the asymptotic quantum numbers are con­
cerned. The listed transitions are forbidden not 
higher than in second order. One sees from this 
table that the admixed transitions of group 1 as 
well as the fundamental transition are doubly 
forbidden. The allowed admixed transitions will 
be of minor importance, since their matrix ele­
ments of the operator j are forbidden. Thus, 
here the contribution from the correction terms 
will be small and the deviations from the Alaga 
rules must be unimportant. For the transitions of 
groups 2 and 3 some transitions are always ad­
mixed which are allowed according to the asymp­
totic quantum numbers. Since the matrix element 
of a transition singly forbidden according to the 
asymptotic quantum numbers is decreased in 
magnitude by roughly a factor A1/ 3, the ratio of 

Table III. Changes of the asymptotic quantum num-
bers in the admixed matrix elements for electric 

dipole transitions 

Group I 
I I I I b.E I Order of /Transition of tran- flK !>N !>nz b. A 

SltlOn 
forbiddenness operator 

±1 ±1 
I 

0 ±1 2 2 
'+· -

-2 -1 ±1 ±1 0 ±1 2 

±1 +1 :f2 ±1 !) 2 s+, s_ 

0 ±1 ±1 0 () allowed l+, l_ 
2 0 ±1 ±2 +t -1 2 

0 ±1 ±2 -1 +1 2 s+, s_ 

0 ±1 ±1 0 0 allowed s+, s -
3 0 ±1 0,±2 -t-1 -1 2 

0 ±1 0, ±2 -1 -t-1 2 l+, L 

±1 +1, -1 +1, -1 0 ±1 2 
4 +1 +1, -1 +1, -1 ±2 +1 2 l+, L 

±1 -t-1, -1 0 ±1 0 allowed s+, s_ 

5 0 ±1 0, ±2 1 -1 2 
0 ±1 0, ±2 -1 1 2 l+, l_ 
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the admixed transitions to the fundamental transi­
tion can reach a factor A2/ 3• This can compensate 
for the smallness of the expansion coefficients of 
the admixed transitions which are here of the 
order A - 213 as will be shown below. Thus, with 
respect to the above-discussed transitions, the de­
viations from the Alaga rules will be large for 
transitions with 6K = ±1 while they will be small 
for the transitions with 6K = 0. A behavior of 
this kind in E1 transitions has been noted by 
Vergnes. [7] It should be emphasized that this dif­
ference exists only for the above discussed transi­
tions. In principle doubly-forbidden E1 transitions 
with the following asymptotic quantum numbers 
are possible: 

Group 4 

11K= 0 11N=±1 11n.=0 11A=±1 11~=+1 

Group 5 

11K=±1 11N=±1 11nz=±1 11A=±2 11~=+1 

One sees from Table III that allowed transitions 
are admixed to group 4 but not to group 5. Thus 
here the deviations from the Alaga rules should be 
large for the transitions with 6K = 0 while they 
should be small for 6K = ± 1. 

For those transitions where large deviations 
from the Alaga rules are observed, it is meaning­
less to calculate the absolute transition probabil­
ities without taking into account the contributions 
of the admixed terms. The quantities which are 
calculated in such a manner must differ consid­
erably from the experimental values even when 
the intrinsic wave functions are chosen properly. 
One may hope that the strong forbiddenness of 
some E 1 transitions is connected with the inter­
action between the single particle motion and the 
rotation. 

We now turn to the quantitative consideration of 
the influence of the perturbation (2) on the ratio of 
the probabilities of the mentioned electromag­
netic transitions. Using the known selection rules 
for the operator (2) one can find the wave function 
including the corrections up to first order in the 
perturbation H': 

for K =I=_ 1/2 

\f'"IMKn= I IJfKn)- [(l + K) (I- K + 1)J'Iz 

(K -1m 17-1 Kn) 
X~ 2J(En-Em) 1IMK-1m) 

m 

-[(I -K) (I+ K + 1)]'1· 

(3) 

\('"IM'/,n=l I M 1/2n)-(-1)1-'/, (I+ 1/ 2) 

~ (-1/2m!7 11/2n) IIMij m) 
X.L.J 2l(En-Em) 2 

m 

-[(I _1j2) (I+ 3j 2)]'/, ~ (3~~~~:+}__1~:~ 
m 

Here En is the energy corresponding to the state 
n of the intrinsic motion. 

The corrections to the wave function which con­
tain the allowed matrix elements of the operator ] 
are small and are of the order of the ratio of the 
rotational energy to the distance between the mix­
ing levels. Their order of magnitude is I t/2 A- 213 

if I ~ K, and about I A - 2/ 3 if I » K. 
When computing the reduced transition proba­

bility for a transition of multipolarity L, 

B (L, I Kn--+ I' K'n') 

with the wave functions (3) we obtain ( 6K = K' 
- K) 

B(L, IKn-+I'K'n') = B 0 (L, IKn-+I'K'n') (1 + bn·)~ 

x{ 1 +[(I+ K) (I -K + 1)]'1• 

(IL; K -1, !!..K + 1/ I'K') an-+ bn·-
x (fL; K!J.K I f'K') 1 +hn• 

+[(I -K) (I+ K + 1)]'1• 

(IL; K + 1t-.K -1/ I'K') an++ hn'+}2 
X. (JL; K!J.K I /'K') 1 + bn• ; 

bn· = bn,+ [(L + t-.K) (L- t-.K + 1)]'1• 

+ bn·- [(L + !J.K + 1) (L- t-.K)]'I•, 

(4) 

Here M Lv is the electromagnetic transition oper­
ator in the intrinsic coordinate system, B0 is the 
reduced transition probability without considera­
tion of the perturbation (2), \ IL; K6K I I'K') is 
a vector coupling coefficient, and the quantities 
a~ and b~' are given by the expressions 

+ __ ~ (K ±1m If+ JKn) (K'n' l1~fu,q1 / K ±1m) 
an-- .L.J 21 (En- Em) (K'n' I JVh1.K I Kn) ' 

m (5) 

bn.± = _ 2] (K'n' 1/+ I K' =f 1m) (K' =f 1m I JlhM:nl Kn) 
m 2J(En•-Em) (K'n'IMu.KIKn) 

( 5') 

The coefficients a± and b±, do not depend on n n 
the total angular momentum of the nucleus. They 
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are determined by the structure of the intrinsic 
states. 

Equation (4) has been obtained for the case 
L < K + K' - 1 which, as a rule, is fulfilled for 
low multipolarity transitions. If L ~ K + K' - 1 
one can write down analogous expressions. How­
ever, they contain a large number of constants. 

As one can see from (4) the coefficients a and 
b can be of the order 1 because of the suppression 
of the matrix element of the main transition, even 
though the admixtures to the wave functions ( 3) 

are small. The ratios of the given probabilities 
between different numbers of a rotational band 
depend in the present approximation on two 
parameters. One sees from (4) that for flK = ±L 
one of the vector coupling coefficients vanishes. 
Then the ratio of the reduced transition probabil­
ities depends only on one parameter. 

One can construct two ratios of reduced transi­
tion probabilities for E1 transitions orginating 
from a level with spin I: 

(/ K AK) ~ B(1,1Kn-+IK'n') 
111 ' ' B(1,1Kn-+I-1,K'n')' 

112 (I; K, AK) = B ( 1, IKn-+ I+ 11, K'n') 
B(1, IKn-+I, K'n') 

Using (4) and the explicit form of the Clebsch­
Gordan coefficients it is easy to obtain the general 
expressions for the quantities 1) 1 and TJ 2• 

In the case llK = ±1 the ratios of the probabili­
ties depend on one parameter and have the form 

'1')1(!, K, +1) = '1')1°{1, K, ±.1) [1- Iz±]-2; (6) 

'1')2{/, K, +1) = 'l')z0 (I, K, ±1) (1 + (I+ 1)z±)2; (7) 

For L:lK = 0 

(I K 0)= O(I K 0)[1-I(I+1)u-/2K]z (8) 
111 ' ' 111 ' ' .1- 1/ziu+ ' 

"'z(I K 0)="' O(I K 0) [ 1+1/z(I+1)u+ ]2· (9) 
., ' ' .,z ' ' 1-I(I+1)u_f2K ' 

u±(K) = )'2(an- ±an++ bn·- + bn,+) ___ _ 

1- y2(an+ +an-)+ K(an-- an++ bn,-- bn•+) 

The quantities TJ~ and TJg in (6) and (8) are the 
ratios of the reduced transition probabilities in 
zeroth order of the perturbation H' found by 
Alaga [i]: 

O(I K AK)- <11; KL\KjiK')2 
111 ' ' - (11; KL\Kji -1K')2 ' 

O(I K AK)- (I1; KL\Kjl + 1K')2 
'I'Jz ' ' - (11; KL\KjiK')2 ' (10) 

For transitions between levels where K or K' 
equals %. the formulae for the ratios of the trans­
ition probabilities become more involved and the 
number of parameters increases. Using the wave 
function ( 3') one easily finds the ratios TJ 1 and TJ 2 

for dipole transitions between levels of two rota­
tional bands with K = %. K' = % or K = %. 
K' = %: 

forK'= 1/z 

'1')1 (/, 3/z, -1) = 1]1°(/, 3/2, -1) 

[ 1+(-1)I-'h(J+1f2)t_ ]2 
X 1-lz-(3/z)+(-1)I+'/,(f- 1/z)L ' 

'1')2(/, 3/z, -1) = 1]2°(/, 3/z, -1) 

X [ 1 +(I+ 1)z-(3/ 2)+(-1)I+'i,(I +3i2)t_J2· 
1 +(-1)r-•t,(I + 'i2}L , (11) 

T]1 {/, 1/z, 1) = '1')1°(I, 1/z, 1) 

[ 1+(-1)1-'h(/+1/z)t+ 12 
X 1-/z+('i2)+(-1) 1-'i,(J +i./2)t+ J ' 

'YJz(/, 1/z, 1) = 'l')z0 (/, 1/2, 1) 

x[f +(I +1)z+(li2}+(-f)I-'/,(J + !fz)t+12 (12) 
1+(-f)I-'/,(I+ 1/2)t+ , 

In addition to the parameters z± (K) which are 
given by (7), these equations contain also the fol­
lowing quantities: 

t+ = an(1/2)+ ~n·(3/z) , 
1 - ( 3/l"2) an+- ( 1/l"2) bn'+ 

L = Un (3/z) + ~n' ( 1/z) 

1 +(1/y2)an-+(3fll2)bn·-' 

where 

otn(K) = _ ~ (K -1m 1/--1 Kn) (K'n' 1.1111 1-K +1m) 
m 21 (En- Em) (K'n' !1vh~K I Kn) 

~n' (K') = _ ~ (K'n' 11, I K' -1m) 
m 21 (En'- Em) 

X <-K' +1m i J/1,-1 1 Kn> 
' (K'n' I iVh::,K I Kn) 

Equations (6), (8), and (11) can be easily 
checked by experiment. In Table IV the experi­
mental values are compared with the values fol­
lowing from the Alaga rules and from the present 
approach. The transitions are emphasized which 
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Table IV. Comparison of the experimental ratios of the reduced 
dipole transition probabilities with the ratios computed from 

equations (6), (8) and (11) 

4> '" ~a-scu Single particle 
0 ..... \w ..... transition ' !U~ 0 Ul .... 

ucleus c. en c: - K[Nnz A]-+ ... ~ 
~;·a~ . 4>.: 

C.4> 
--> K'[N'nz'A'] b (/)• ... ~ ~e .s' 

N 

Tbt&7 E1 'I• •;, [532]-+ 'I• [411] 0.004 

Tb',. .,, 'I. [532]--. 'I• [411] 0.014 

Yb11• M1 'I· '1. [523]-+ 'I· [512] 
'I. '!. [523]-+ 'I· [512] 2.3 

M1 'I• 'I• [503]-+% [512] 5,5 

Yb'" M1 •;, 'I. [514]-+ '!. [512] 1.0 

Ybna Ml 'I. 'I• [514]-+ '!. [512] 0,41 
E1 'I• •;, [633 -+ 'f, [512] 83 

Luna E1 '!. 'f,"£514]-+ 'I. [404] 2.0 

Hf111 M1 7/2 'I. [514] .... '!. [512] 2,86 
'!. 'I• [514] .... '!. [512] 1.79 

llj2 'I• [514] .... '!. [512] 0;15 

Hf177 E1 'I. 'I. [624]-+ 'I. [514] 175 
llJ. 'I• [624j-+ 'I• [514] 15.8 
13J. 'I• [624 _,. 'I• f14l 7:7 
11/z 'loL624J-+ 'I• 514] 20 

W"' M1 'I• 'I• [512] _,. 'I• [510] 14,3 

'I. 'I• [512]-+ '1. [510] 0.11 

'I• '1. [512]-+ 'I• [510] 0.77 

0811& M1 'I• '1. [512] _,. 'I• [510] 6,25 

'!. '1. [512] - '1. [510] 0,15 

'I. '1. [512] .... 'I• [510] 0,67 

lead to the determination of the parameters z, u 
and t. As one sees from (6), (8) and (11), the 
ratio of the reduced transition probabilities de­
pends quadratically on these parameters. There­
fore for the case of transitions with &<: = ±1 
[Eq. (6)] two values are found for the parameter z, 
while four pairs of values are obtained for the 
corresponding parameters ( u +> u_ or z and t) in 
the case D.K = 0 [Eq. (8)] and for transitions which 
are described by Ill) and (12). Those values were 
selected for the parameters which gave the best 
agreement with experiment. It must be pointed 
out that the parameters are best determined from 
those ratios which have the largest deviations from 
the Alaga rules; as a rule these transitions are 
most sensitive to the admixtures. 

The comparison of the theory with experiment 
shows that the experimentally observed intensity 
ratios are well described by the corrections in­
troduced here. This agreement indicates that the 
observed deviations from the Alaga rules result 
basically from the interaction between the intrin­
sic motion and the rotation. 

In order fo estimate the limits of validity of 
the simple phenomenological description de­
veloped in this paper, more accurate experimental 
determinations of the ratios are needed, and a 
correct estimate of the experimental uncertainties 
of the measurements and of the analysis of the 
data is required. In particular, it is essential that 

1la (I) 1lz (I) 
4> 

' Parameters 
(J 

"' » .... ~ 
"' » .: 

bD4> ... t~ bD4> ... z, u, t 4> ., .... 0 ., .... 0 
... 

a-e 4> 

.... " 4> -" 4> .... < ... ..c: r>:l <"' ~ 
4> 

!-< 0.: 

0.43 0,0035 29 0,17 - z= -4.02 ['] 

0.43 0,013 5, 7 0,17 - • =-1,94 ['] 

0.48 0,40 - { u+ = 2.6.10-• 
U- = 9,5·10-• 

1.86 - 1.25 0,98 1,22 [''] 
0.30 - 0,45 0,13 0.51 z = 0,22 ["] 

0.30 - 0,91 0,125 1.11 z = 0,44 ["] 

0.30 - 0.71 0.125 1,43 z = 0,53 ["] 
0.30 - 0.55 0 . .125 0.56 z =0,31 ["] 

0.23 - 0.72 0.10 0.69 z = 0,30 ["] 

0.30 - 0.5 0.125 0,91 
0;52 1,06 0,17 1.60 z = 0,38 ["] 
0,69 0.59 0.20 2.44 

0.23 - 0,37 0,10 0.46 ["] 
0.41 17 z=0 .. 21 
0,56 4,3 
0,70 2,3 

0,80 - 0.46 0,25 -
1.14 0,51 100 0.31 137 { •=0,74 ["] t = -0.26 
1,33 0,99 0,35 0.77 

0,80 - 0.52 0.25 -
1.14 0,10 110 0,31 312 { z = 0.84 ["] t = -0.28 
1:33 0,79 0.90 0,35 0,89 

the multipole composition of the radiation be found. 
In conclusion the authors express their deep 

gratitude to A. M. Demidov for his help in the 
selection and analysis of the experimental data. 
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