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We consider acceleration of charged particles by a beam of radiation as a result of Compton
scattering of the beam photons on electrons. We show that for the radiation fluxes encoun-
tered in nature (such as during supernova flares) the nuclei may acquire energies of the

order of their rest energy.

TSYTOVICH [ noted the possibility of plasma
particle acceleration by Cerenkov absorption of
protons in the presence of a magnetic field or if
the dielectric constant is greater than 1. We con-
sider here a different mechanism of acceleration,
with Compton scattering of photons, which does
not depend on these conditions.

1. Let the radiation flux pass through a layer
of plasma of concentration n (for example, the
outer layer of a star) and of optical scattering
thickness < 1. The photons are multiply scattered
by the electrons, which are in turn ‘‘dragged’’ by
the photons. Since the electrons transfer momen-
tum to the nuclei by collision or via the electric
field, the entire layer is accelerated as a whole.

An electron situated in the beam of the radia-
tion that it scatters (in which Aw <« mc?) experi-
ences an effective force
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where
A=—nh(k—k); dWV =[c—vcos(k, v)]dZf¥;

dEEk,—differential scattering cross section.

We express the quantities k and A in terms of
their values k, and A in the electron rest sys-
tem, using the invariance of dZ:
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The integral of the second term in the curly brack-
ets vanishes, since

*[Aoy] = Ao X py.

2
dS, = —r;—[1 4 cos? (koko') ] dQ0".

The remaining expression takes the form
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where S,—density of radiation flux in the electron
rest system, and therefore

F— F0+(1—%) [[Fov]—;'?],

where Fg = 8771’% S,/ 3c—effective force in the elec-
tron rest system.

After the electrons have become noticeably ac-
celerated, their velocity in the direction of the
radiation flux exceeds greatly the transverse com-
ponents, so that we can put v || Sy; then
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where T“—component of the stress tensor in the
flux direction, Ty—energy density; 8 = v/c.

2. Assume that a spherically symmetrical
radiation flux enters from the outside into a
spherical layer of plasma with inside radius R.
Then the point P at a distance r > R receives
not all the radiation, but only photons having wave
vectors k in the solid angle subtended by the star
at the point P. Their maximum angle with the
radius vector P is determined by the equation

Im = €08 Om = (1 — R2[12)',
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For a spherically symmetrical distribution Ny,
the calculations yield
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where J—radiation flux density at r = R. There-
fore
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An electron displacement § gives rise to an
electric field E = 4mned, which increases the
force F even when 6 < R and B < 1. Indeed, in
this case F - 87r3J/3c, meaning that eE = F for
6/R =~ riJ/ne’cR « 1, at all realizable values of
J, n, and R. This field accelerates the nuclei and
it can be assumed that the force ZF (Z = atomic
number) is applied to the assembly with total
mass M + Zm = M.

Equation (3) is easy to solve in the limiting
cases of small and large particle displacements
Ar:

a) Ar =r — R < R; we can assume here that
B < 1 and, in accordance with (3)

dv  8mrg?Z] 8
&= 5 (1=38),
hence
8/38 = 1 — exp(— t/ &).

The characteristic time is t, = 3Mc¥87rdJ; for
J ~ 10%! erg/cm? sec we have t; = 1 sec; for
J ~ 10" erg/cm? sec 21 we get ty ~ 10° sec.

b) RYr? < 1; in this case, multiplying (3) by
vV, we get

de _ 8nZr’JR*B(1—B)  8nZrJR> [ Mc? )2 a1

dat 3R(14p)  3e(l+ ﬁ)z(T dt r(t)
In the extremely relativistic case (€ > Mc?) we
canput 1+ =2 and for r(t) > r(0) ~ R we
obtain the largest attainable particle energy:
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In the opposite limiting case (€ — ¢; < Mc?) we
have

e — g9 = 8nZRJry? [ 3c.

3. The foregoing acceleration processes can
be realized, for example, during explosions of
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supernovas of type II on the surface of an ex-
panding shell. Imshennik and Nadezhin ) have
shown that at the instant when the shock wave
emerges to the surface of the star, the tempera-
ture of the surface is 500,000°K, and consequently
the radiation flux density is J ~ 10 erg/cm?® sec.
Within approximately one hour, a star expanding
with a velocity ~ 10 km/sec increases in radius
from an initial Ry ~ 10—20 Re to R ~ 4 x 101
cm, i.e., by a factor of several times. For

J ~ 10" erg/cm2 sec the characteristic time is

ty ~ 10> sec so that at the instant of emergence of
the wave we can use the formula (4), which yields
€kin = € — Mc? ~ Mc?. The condition that the op-
tical thickness of the accelerated layer be small
yields for the number of particles in the layer

N ~ 47RYZ ~ 10% for R ~ 102 cm and for

T ~ 10" cm?,

The fluctuations of the radiation flux lead to an
energy distribution of the particles and increase
the upper limit of attainable energies. In the
presence of a magnetic field, the accelerated par-
ticles remain in the region surrounding the star.
This process can be the mechanism for the in-
jection of fast electrons and nuclei.
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