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A phenomenological derivation is given of the boundary conditions for a magnetoelastic sys­
tern. The discrete spectrum of characteristic frequencies of a thin magnetic film, dependent 
on exchange and magnetoelastic interactions, is calculated. In the spectrum it is possible to 
distinguish a Kittel exchange part (somewhat modified by magnetoelastic interaction), a 
mixed part, and a part due to magnetoelastic interaction (and somewhat modified by exchange 
interaction). Oscillations of all three types can be excited in a thin film by a uniform micro­
wave field. 

INTRODUCTION 

IT was shown by Kittel [1] that the boundary con­
ditions for the magnetization vector M at the sur­
face of a thin magnetic film, magnetized perpen­
dicular to its surface, lead to a discrete spectrum 
of spin-wave frequencies, 

where w0 = g ( H0 - 47rM0 ) is the frequency of uni­
form ferromagnetic resonance, a is an exchange 
interaction constant, and g is the gyromagnetic 
ratio. The permissible values of the wave number 
kn are determined from the boundary conditions. 
The boundary conditions for the magnetization vee­
tor have been analyzed in a number of works [1- 3]. 

In the general case the boundary conditions lead to 
transcendental equations for kn, an approximate 
solution of which is given by the expression 

kn ~ nlt / 2d, n = 0, 1, 2, 

where 2d is the film thickness. 
Some of these frequencies (those corresponding 

to odd values of n) can be excited by a uniform 
microwave field. Such spin-wave resonance in thin 
films was observed in a series of investigations in 
the centimeter-wavelength range of frequencies[4•5J 
( cf. also the review by Frait [SJ). From the dis­
tance between spin-wave resonance peaks it is pos­
sible to determine the exchange-interaction con­
stant a, one of the fundamental constants of the 
theory of ferromagnetism. 

It seemed of interest to investigate how the 
spectrum c f characteristic frequencies of a mag-

netic film would be affected by inclusion of mag­
netoelastic interaction. It is known [ 7] that in an 
infinite medium, magnetoelastic interaction leads 
to an important modification of the equations of 
motion and, consequently, of the dispersion rela­
tion. It is clear that taking account of magneto­
elastic interaction in a thin film should lead both 
to modification of the equations of motion (the dis­
persion relation) and to modification of the bound­
ary conditions for the magnetization vector M and 
the elastic displacement vector u. 

1. THE HAMILTONIAN OF THE SYSTEM 

For an infinite ferromagnetic crystal, a phe­
nomenological Hamiltonian 1>, with magneto elastic­
interaction terms included, has been presented in 
a number of works (cf., for example, [7J). For a 
thin magnetic film, however, it is important to sep­
arate out the surface part of the Hamiltonian. We 
will describe the deviation of the system from the 
magnetoelastic ground state by the normalized 
components of the vector magnetization, fJ.i 
= Mi/M0, and by the components of the elastic dis­
placement vector, ui. (As ground state we choose 
fJ.x =f-ly= 0, fJ.z = 1, Ui = 0; z is the axis of easy 
magnetization.) Since the generalized coordinates 
fJ.i and Ui of the system are functions of the Car­
tesian coordinates, the Hamiltonian is written in 
the form of a series in the generalized coordinates 
and their spatial derivatives. On imposing the 
usual requirements (invariance of JC with respect 

1 >what is being considered is the potential-energy part of 
the Hamiltonian. 
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to inversion of the sign of time, a minimum of JC 
in the ground state), we get for the elastic part of 
the Hamiltonian, JCp, the expression 

::ftp (" { P P iJni P iJni iJni = J A;i u;ui + aBiihu; -- + a2C;jhl----
v iJx" iJx" iJx1 

P iJ2u. } + a2Diiklu; --1 - + . . . dV 
OX~tOX! 

(1.1) 

and for the magnetic part of the Hamiltonian, JCm, 
a formally analogous expression; for the part of JC 
that describes the magnetoelastic interaction, 
JCmp. we get 

::Jtmp = ~ { EiihllifljUh + aF;jkllli ::: U! 
v 

OU! } + aGiihlllilli-.-- +... dV. 
dxk 

(1.2) 

On transforming certain terms in (1.1) and (1.2) 
and in JCm to surface and contour integrals (and 
neglecting the latter ) , collecting all terms of the 
same type with new tensor coefficients, and im­
posing the requirement of invariance of JC with re­
spect to a uniform displacement of the whole crys­
tal, we get 

I'W 1 { iJili iJfl1 
u~ = J A;jflilli + a2Biihl~-,-

v uXh uxl 

+ a2Ciikl U;j uhl + aDiihlllilliuhl} dV 

+ ~ {Ai~hllilli- aB;~hh lli :lli - aC -'-hhu- iJui 
8 unk ' 1 t iJnh 

where DzzkZ = D~zkZ = 0, Uik is the elastic defor­
mation tensor, and nk is the outward normal to the 
surface of integration. Here and hereafter, primed 
constants refer to the surface of the crystal. 

It is also possible to introduce a phenomenologi­
cal Hamiltonian of a magnetoelastic system by a 
method that takes account of the discrete character 
of the crystal lattice. A simple lattice is formed 
by translation of three noncoplanar vectors aCk). 
The position of an atom in the lattice is conveniently 
described by a vector n with whole-number com­
ponents 

X;0 = 2J a;(k) nk 
k 

or, on introduction of the matrix a= II aik> 11. 

r 0 = ~n. 

(1.4) 

(1.4a) 

In such a treatment, the generalized coordinates of 
the system are the displacements uP of the atoms 
from the equilibrium position and the values t.tP of 

the magnetic moments associated with a single 
atom. The Hamiltonian of the system is written 
in the form 

I'W ~ Amn m n ~ ...-.mn m D + ~ cmnnm m D 
u~ = L.J ii !li !li + L.J ~ii U; Uj L.J ijk r; !li Uk • 

m,n m,n m,n 

For m = n the coefficients Alj"m describe the 

magnetic anisotropy, but <I>ljm = Glj"~ = 0. 

(1.5) 

The sum over m can be broken up into two 
sums by separating out the values m = m' that 
correspond to surface atoms. If the changes of 
displacements and of magnetic moments between 
neighboring atoms are sufficiently small, and if 
the exchange interactions are of sufficiently short 
range, then the following expansion is valid: 

n m h au j 1 h h a2ur 
ui = ui + (ah)k -a- + -2 (ah)k (ah)1 -a ·a + ... , 

xk xk Xz 
(1.6) 

where h = n - m. A similar expansion holds also 
for t.tf· On substituting these expansions in (1.5), 
performing the summation over n for fixed m 
(which leads to different results for m ;>! m' and 
for m = m' ), and then replacing the summation 
over m by integration, we get an expression agree­
ing with (1.3). 

Hereafter we will consider a magnetically uni­
axial, elastically isotropic crystal in the form of 
a thin film (Fig. 1). For such crystal symmetry, 
the volume density of the Hamiltonian takes the 
form 

(1. 7) 

z 

n 

2d 
0 !/ 

.I 

FIG. 1 

where {3 is the uniaxial anisotropy constant, a is 
the exchange constant, A. and t.t are the elastic 
constants, and 

(1.8) 

Instead of a surface density of the Hamiltonian, it 
is convenient to write the volume density in an in­
finitely thin layer close to the surface, 
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- 1 , 2 a' aM t-t' au 
3fs= --~ (Mn) - -M- --u-

2 a an a an 

(1.9) 

In this expression, all quantities are functions only 
of the surface coordinates (in our case x and y); 
the constants a, tJ. 1 , and Y 1 agree in order of mag­
nitude with a, tJ., and y respectively. For a ferro­
magnet in a magnetic field, a term - M • H must be 
added to the expressions (1. 7) and (1.9). 

2. EQUATIONS OF MOTION 

The equations of motion for a magnetoelastic 
system are the Landau-Lifshitz equations, an equa­
tion of elasticity, and Maxwell's system of equa­
tions (cf., for example, C7J). The effective field 
H(e) and force f(e) that enter in these equations 
are determined through the volume part of the 
Hamiltonian (1. 7): 

H;(e) = _ affev + _!____ [ a:flv ] (2 _1 ) 
aM; axk a (aM;Jaxk) ' 

By neglecting the change of volume with defor­
mation and by carrying out a linearization, it is 
possible to obtain a system of equations for m = M 
- M0 and u. In the solution of the problem of char­
acteristic oscillations of a magnetic film, we limit 
ourselves to the case of oscillations that are uni­
form in the plane of the film (in this case high-fre­
quency magnetic fields are absent ) . On introducing 
the circular components m± = mx ± imy, u± = Ux 
± iuy, we get two independent systems of equations 
for the temporal Fourier components of m +, u + and 
of m-, u-: 

a2m± au± 
agMo--- (wo+ w)m±-vgM02--= 0 az2 - az , 

a2u± yM0 am± 
St2--+ w2u±+---- = 0, (2.3) 

az2 p az 

(i) (i) 
where w0 = g (j3M0 - H0 ), H0 = H0 - 4rrM0, and St 
= (J-L/ p )1/2 is the transverse speed of sound. 

We seek a solution of each system in the form 
of a plane wave, 

m± =a± sin kz + b± cos kz, u± =A± sin kz + B± cos kz, 

(2.4) 

and accordingly obtain two systems of homogeneous 
equations in the amplitudes. From the vanishing of 
the determinants of these systems we get the dis­
persion relations. For m + and u + , 

for m- and u-, 

[w- (wo + agMok2 )] [w2 - St2k2] - rjgM0s12kZ = 0. 

(2. 6) 

Here TJ = y 2M5 I psi is a dimensionless magneto­
elastic coupling parameter. 

The relation (2.5) for right-hand polarization 
describes a weakly modified elastic wave. Here­
after we shall be interested in the dispersion re­
lation (2.6) for left-hand polarization; it describes 
modified magnetic and elastic oscillations. The 
permissible values of the wave number k, and con­
sequently the spectrum of characteristic frequen­
cies, are determined by the boundary conditions on 
the surface of the film. 

3. BOUNDARY CONDITIONS 

For derivation of the boundary conditions it is 
necessary to consider the Landau-Lifshitz equa­
tion and the equation of elasticity on the surface of 
the crystal. The effective field H(e) and force f(e) 
that enter in these are determined through the sur­
face part of the Hamiltonian (1.9). Because Jes is 
independent of the coordinate normal to the surface, 
we have 

H;(e) =- affes , He)= - affes . (3.1) 
aM; au; 

On carrying out linearization and on introducing 
circular components, we get for the Fourier com­
ponents of m± and u± the modified "magnetic" 
and "elastic" boundary conditions (at z =±d) 

I M am± I I M a g o -- - a ( wo ± w) m± - v g o2u± = 0 an ' 

j.t 1 au± y1Mo ---+ aw2u±---m± = 0 (3.2) 
p an p ' 

where w0 = g (j3'M0 + Hbi) ). 
On substituting in (3.2) the solution for m- and 

u- in the form (2.4), we get a system of four homo­
geneous equations in the amplitudes. From the 
vanishing of the determinant of this system we get 

{[ooe'v tg v- (w- w01 )] [v tg v- aD12 I d] 
- rJ 1 dgMo I a}{ [we'v ctg v + ( w- Wo1 )] [v ctg v 

+ aD12 I d] - YJ 1dgMo I a} = 0, 

we'= a1gM0 /ad, 

Y) 1 = 'V12Mo2 I PSt2 , 

D1 = wd I st', 
v = kd. 

st' = (1-11 I p) '/,, 

(3.3) * 
Substitution in (3.3) of the dispersion relation 

*tg = tan, ctg = cot. 
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(2.6) leads to a transcendental equation, which de­
termines the permissible values of v. 

In the absence of magnetoelastic coupling ( TJ 
= TJ' = 0 ), we get the known relations determining 
the discrete spectrum of spin waves [2], 

gMo~~ We 
tg v = - ---+- v 

we' v roe' ' 
gMo~~ We 

ctg v = --,---,- v, 
We V We 

(3.4) 

where t:,.f3 = (3' -(3 and we= agM0 /d2, and the equa­
tions determining the discrete spectrum of charac­
teristic elastic oscillations of a thin film, 

tg v ~au I d< 1, 

- ctg v ~ av I d < 1, 

i.e. 

i.e. 

v ::=::::::: nn, 

In the presence of magnetoelastic coupling, we 
have four transcendental equations 

tg v = h 2 ( v) , ctg v = ({J1, 2 ( v) , (3. 6) 

which can be solved graphically for given values of 
the parameters. The general character of each so­
lution has the form 

Vn(i) = (2n- 1)n I 2- 6n(i), 

where n = 1, 2, ... ' and o~i) ~ 1f/2. 

(3. 7) 

4. THE SPECTRUM OF CHARACTERISTIC FRE­
QUENCIES 

The dispersion relation (2.6) can be put into the 
form 

where 

u 
ao = 1- u + T)aM---, 

u-uk 

ao = Wo I w, aM = gMo I w, u = ·wev2 I ·w, 
Uk = meD2 I w, D = wd I St. 

(4.1) 

The character of the curve (4.1) is depicted in 
Fig. 2. The dispersion relation is represented by 
two hyperbolas with asymptotes u = Uk and u = 1 
- u0 + TJ UM. The quantities Uk and TJ UM are rep­
resented in Fig. 2 not to scale, but in such a way 
as to emphasize the properties of the spectrum 
that are due to magnetoelastic coupling. The ac-

u 

FIG. 2. General form of the dispersion relation (4.1). 

tual values are Uk ~ 0.5 x 10-2, TJD"M ~ 1.6 x 10-2 

(we use the following values of the constants: 
a~ 10-12 cm2, M0 ~ 5 x 102 G, w ~ 5 x 1010 sec-1, 

st ~ 3 x 105 em sec-1, TJ ~ 8 x 10-2 ). 

From the boundary condition, written in the form 
(3. 7), it follows that the permissible values of u 
can be expressed in the form 

We a [ n ]2 
Un =---;- Vn2 = aMdJ (2n -1) 2- 6n • (4.2) 

A uniform microwave field can excite the types of 
oscillation with small on (On = 0 corresponds to 
the case in which the film thickness contains an 
odd number of half-waves; this is the case in which 
the excitation is most effective). For such types 
of oscillation, 

an2 

Un"' aM (2d)2 (2n -1)2. (4.3) 

It is easy to show that the maximum number of 
different wave numbers in the spectrum increases 
linearly with increase of the film thickness. Simul­
taneously with the increase of the number of char­
acteristic frequencies, the value of u1 (n = 1) ap­
proaches zero, and the "frequency" u01 corre­
sponding to it approaches unity. For thick films, 
satisfying the relation 

2d ;;:.::, JtSt I w, (4.4) 

u1 becomes less than or equal to uk. For the val­
ues of w and st that we have used, the relation 
(4.4) is satisfied for thicknesses 2d <. 1. 7 x 10-5 

em. Thus even in films of thickness 1700A the 
first peak falls in the region of critical u (we shall 
use the term critical for the range of u values in 
which u ~ uk). The range of critical u is shown 
in Fig. 3, from which it is clear that when u <. Uk, 
the corresponding peak falls in the region u0 > 1, 
i.e., to the right of the uniform-resonance peak. 
If some "wave numbers" un fall in the critical 

u ·~ Us ----- ----; 

' 
' 

U~; \ - -

____________ i __________ _ 

---~1 Uz I 

I 
u, 1--------,-

I 
II 

FIG. 3. Character of the magnetoelastic spectrum in the 
range of critical Un, Un-Uk· The arrows show the "frequencies" 
a on corresponding to the Un 's. 
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region, then the distribution of peaks can be very 
peculiar. 

The distance between neighboring peaks, in the 
case in which un and un+ 1 correspond to the same 
branch of the dispersion relation, is 

(~cro)nH,n 

= (un+i- Un) [1 +!lO"M _____ u_A ___ .,----] 
(un- Uh.) (un+i- uh.) 

= O"M(a / d2) [2mt- (llnH +On)] [n- {bn+1 

- iln)]{ 1 + d2'Y)D2/a'([ (2n + 1);- ilnH r- fl2) 

(4.5) 

For un sufficiently far from Uk, the contribu­
tion of magnetoelastic coupling may be neglected, 
and the distance between neighboring peaks is 

(4. 6) 

that is, in this case measurement of ( .6.a0 )n + 1 n 
' gives a possibility of determining the exchange 

constant a. 
For un's close to Uk, at sufficiently large TJ 

the term unity in the curved brackets in (4.5) may 
be neglected in comparison with the second term. 
In this case, the distance between peaks is deter­
mined by the magnetoelastic coupling parameter TJ: 

(~cro)n+!, n '"'"'8'Y)O"MPn / [ (2n + 1)2 - P] [ (2n- 1) 2 - P], 

(4. 7) 

where P = ( 2dw/ 7rSt )2• 

If urn < uk and is close to the value of uk 
"from below," but um+1 > Uk, then at m + 1 there 
begins a "transfer" of the spectrum from the left 
branch to the right ( cf. Fig. 3). The distance 
(.6.ao)m+t,m = (.6.ao)me is the "width" of the mag­
netoelastic spectrum, 

Um+l- Um 
(~cro) me"' 'Y)O"MUh. ( ) ( ) , (4. 8) 

UmH- Uh. Uh.- Um 

which is also determined by the parameter TJ· 

CONCLUSION 

The investigation presented has shown that be­
sides the discrete spectrum of characteristic fre­
quencies dependent on exchange interaction, there 
is in a thin magnetic film a discrete spectrum of 
characteristic frequencies dependent on magneto-

elastic interaction. These spectra are not inde­
pendent; therefore there can actually be excited in 
the film mixed exchange-magnetoelastic oscilla­
tions. The positions of the resonance peaks of these 
oscillations depend both on the exchange -interaction 
parameter a and on the magnetoelastic-interaction 
parameter TJ· Somewhat conditionally, however, the 
whole spectrum can be broken into three parts: 
(a) the usual Kittel exchange spectrum (but some­
what modified by magnetoelastic interaction); 
(b) a mixed spectrum; and (c) a spectrum dependent 
on magnetoelastic interaction (but somewhat modi­
fied by exchange interaction ) . 

The magnetoelastic spectrum behaves quite pe­
culiarly. Some of its resonance peaks may lie to 
the right of the uniform ferromagnetic resonance 
peak (Fig. 3); monotonic dependence of the position 
of the peaks on the order-number of the wave num­
ber may not be observed (transfer to the second 
branch of the dispersion relation); etc. The pecu­
liar behavior of this spectrum and its great sensi­
tivity to change of thickness of the film should give 
a possibility of observing it experimentally. 

Measurement of the position of these peaks gives 
the possibility of determining the magnetoelastic 
interaction constant TJ with microwaves. 
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