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Unitarity of the theory is proven in the second order of nonlinear quantum scalar field theory. 
The asymptotic value of the imaginary part of the amplitudes at high energies is obtained. 

1. An attempt was made recently[ 1- 3] to construct 
a final local theory of the scalar field by intro
ducing an essentially nonlinear interaction Lagran
gian that satisfies definite requirements. The in
vestigated class of interaction Lagrangians 

Lr(cp(x)) = -gU(cp(x)), 

where U (a), regarded as a function of the com
plex variable a, has the following properties: 

1) U (a) is an analytic function in the complex 
a plane with a finite number of cuts, the singular
ities being such that the integral of I U (a) 12 

exists in any bounded region; 
2) U (a) is real, has no singularities on the 

real axis, and can be expanded at the point a = 0 
in a Taylor series: 

00 

U(a) = ~ anun/n!; 
n=O 

3) U (a) satisfies at infinity the condition 

lim a-2 U(a) = 0. 
1«1-+oo 

In [ 1] the amplitudes of the processes were ob
tained in second-order perturbation theory, in 
terms of the powers of the interaction Lagrangian 
in the Euclidean space of momentum variables, i.e., 
in the region where they are real. In the present 
article we investigate the amplitudes in the same 
order of perturbation theory in the physical region 
of the momenta. We are interested in the satisfac
tion of unitarity and in the asymptotic behavior of 
the imaginary parts of the amplitudes at large val
ues of the momenta. 

2. We shall show that the procedure of analytic 
continuation in the region of physical values of the 
momentum, indicated in [ !J, agrees with the uni
tarity condition. The amplitudes of the physical 
processes in second order are determined by a 
sum of integrals in the form (see [ i]) 

(1) 

where 

The representation ( 1) is valid in the space-like 
region of the momentum values ( p2 < 0). We re
call that the functions F(b.) have an essential sin
gularity at b.= 0 and for real positive b. they can 
be expanded in an asymptotic series 

00 

Fm,m,(Ll) = ~ Un+m,Un+m,Lln In!, (2) 
n=no 

where lin-coefficients of the expansion of U (a) 
in a Taylor series. 

The integral (1) is real. It can be continued 
without difficulty into the region 0 < p 2 < ( noJ.!) 2 

Km,m,(P2)=4:rt2 r d~~2 J1 (~p) Fm,m,(Ll2(~)) 
0 p 

( p = ( p2) 1/ 2), and remains real in this region. 

(3) 

In the physical region (for p2 > ( noJ.!) 2 ), the 
integral (3) begins to diverge at large values of {3, 

i.e., Km 1m 2 ( p2) has, as a function of the complex 
variable p2, a cut originating at the point p2 

= ( noJ.! )2. Continuation into the region 

(4) 

will be realized in the following fashion. We per
form in (3) the identical transformation 

(5) 

where 

1213 
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X [Fm,m, (~2(~) )- ~ Un+m,Un+m,~2n(MI n]} (6) 
n=no 

4:rt2 aa N 

Bm,m,(P2)=- ~ d~~2li(PM ~ Un+m,Un+m,~2n(~)/n! 
P a n=no 

(7) 

(a > 0). The integral Am 1m2 I p 2 ) can be readily 
continued into the region (4) and remains real in 
this region. 

To continue the integral Bm 1m 2 ( p2 ) into the 
region (4), we rotate the integration contour up
ward by an angle -rr/2, since it must be recalled 
that the mass J.L, contained in 6.. 2 (J.Lf3), has a small 
imaginary negative increment (J.L- J.L -it). We 
have 

4:rt2 a+1oo N 

Bm,m,(P2)=- ~ d~~2li(P~) ~Un+m1 Un+m2~2"(~)/n! 
p a n=no 

( 8) 

In this expression we can already regard p as an 
arbitrary positive quantity. 

The imaginary part of Bm 1m 2 ( p2 ), as shown in 
the appendix, is equal to 

N 

Im Bm,m, (p2) = 8:rt4 ~ 

where 

(9) 

(10) 

r2n(p 2)-phase volume of n particles at energy p. 
Ultimately the imaginary part of Km 1m 2 ( p 2 ) for 
arbitrary p 2 > 0 is given by the expression 

[P] I"\ ( 2) 
Im Km m. (p2) = 8:rt4 ~ Un+m,Un+m, ~'n p ( 11) 

1 - n=n, n! (16:rt3t • 

where [ p l denotes the closest integer smaller 
than p. 

The proof of unitarity will be presented using 
as an example the amplitude of the elastic scatter
ing of scalar particles (see the figure). 

The amplitude of elastic scattering of scalar 
particles is given, accurate to second order of 
perturbation theory, by the expression 

(0 I ap,ap,SaP,+ap,+ I 0) = [O{pl- Pa) 0 (p2 -p4) 

(12) 
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where [ 1] 

T(s, t, u) = -gu4 + g2K4o(O) + 4g2K31 (~t2) 

+ g2[K22(s) + K22(t) + K22(u)], 

s =(PI+ P2) 2, t =(Pi- Pa)2, 

( 13) 

Let us consider the channel s > 4J.L 2, t < 0, u < 0. 
The imaginary part of the amplitude T ( s, t, u) is, 
according to (11), 

[t'•l 2 

ImT(s,t,u)=g2JmK22 (s)=g28:rt4 ~ Un+2 Qn(s) 
n=i n! ( 16:rt3) n 

From the unitarity condition ss+ == 1 we can 
readily obtain, putting S == 1 + iT, 

(1<4> (Pt + P2- Pa- P4) 2 Im T (s t ) 
(2:rt)2 (2ro12ro22ro32ro4}'1• ' ' u 

n 

(14) 

Since we are checking unitarity in second order 
of perturbation theory, it is necessary to retain in 
the right side of (15) only first-order matrix ele
ments, i.e., 

I (2:rt}4 Un+2 
(0 I ap,ap,T n) =-V n! g (2:rt)a (n+2)/2 

X (1<4> (Pa + P4- k1- ... - kn) 
(2ro32ro42rok, ... 2rokn)'l• 

(16) 

Substituting (16) in (15) we readily obtain (14). 
This proves unitarity in second order of pertur
bation theory. 

We can analogously verify unitarity for the am
plitudes of other physical processes. 

3. We now turn to the asymptotic expression 
for the imaginary part of Km 1m 2 ( p2 ) as p2 - + oo. 

We replace the sum in (11) by an integral: 

Im K (p2} = 8:rt4 C dn Un+m,Un+m, Qn (p2) 
m,m, . J r (n + 1) (16:rt3)n • (17) 

n, 

This does not change the main character of the 
asymptotic express ion. 

As p2 - oo, the principal role in the integral of 
( 17) will be played by the coefficients Un+m at 
large values of ( n + m). Let us find the explicit 
expression for these coefficients. If we assume 
that the interaction function U (a), which enters 
into the class of Lagrangians under consideration, 
has in the complex a plane v cuts originating at 
the points a 1, .•• , a V• then we can show that 

<l'(n) ( (I a· In)) un ~ const~ 1 +O :0 
(n~1), (18) 
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where I ao I = min { I aj I}; 1 ~ j ~ v. Thus, 

~ Qn (p2) 
Im Km ,m, (pz) ~ const j dn r ( n) ---'---'--

o an 
(19) 

where a= 16?T3 1 a 0 12. 

The phase volume ~ n ( p2 ), taken as a function 
of n with fixed p 2, has a maximum approximately 
in the middle of the interval, and falls off towards 
the ends of the integration interval. Since r ( n) 
increases very rapidly towards the end of the 
interval, and ~n ( p2 ) varies smoothly, the entire 
integrand function has a sharp maximum near the 
end of the interval. Let us calculate the integral 
(19) by the saddle point method, using the asymp
totic representation of the phase volume for 
n :S p (see, for example, C4J ): 

(2n) a(n-1)/2 
Qn(P2) = (p _ n)<an-5)/2 

r(3(n -1)/ 2)n'f, 
(p-n<n). 

(20) 

The saddle point can be obtained in the usual 
fashion: 

ii = : [ 1 - 2ln ~Pill) ( 1 + 0 ( ----=---ln-(;/-;--,11 ),....-)) J 
(ln(p I 11)> 1). 

Ultimately 

ImKm,rn,(P2) ~ exp{ ~ ln ~}f(p), 

where f ( p) -certain function that grows more 
slowly than the exponential function given here. 

We call attention to the following: 

(21) 

(22) 

1) The principal asymptotic term in (22) is the 
same for all Lagrangians in the class of interac
tion functions U (a) under consideration. 

2) The principal asymptotic term in (22) does 
not depend on the physical process in question. 

3) The asymptotic expression for the imaginary 
part is determined by the particle mass, and not 
by the new parameters (with dimension of length) 
which enter into the interaction Lagrangian. 

4. An asymptotic expression for Km 1m 2 ( p2) 
for large space-like values of the momentum 
p2 - - oo can be readily obtained from ( 1): 

IKm,m2 (P2)1 ~ ~o;sJ. (-p2>fl2, const>O). 
(23) 

Thus, Km 1m 2 (p2 ) as a function of the complex 
variable p2 has an essential singularity at p 2 = oo. 

In conclusion, let us discuss the behavior of the 
amplitude for large values of the momentum in the 
physical region. The growth deduced for (22) runs 
counter to nature. In all probability it will be com-

pensated for by inclusion of the higher perturba
tion-theory approximations, if unitarity is satisfied 
in each order of this theory. Thus, only a study of 
the higher approximations of perturbation theory 
can answer this question. 

On the other hand, attempts have been made 
recently to find limitations on the growth of the 
amplitudes of physical processes that follow from 
the causality requirement. It was found, thus, that 
the growth in the amplitude of the elastic scatter
ing of a meson by a nucleon should be slower than 
exponential in the energy, in the Breit system of 
coordinates (we recall that in this system E ~ s). 
If this conclusion is true, then the behavior of the 
amplitudes in the nonlinear theory under consider
ation agrees with the causality requirement, at 
least in second order of perturbation theory, since 
it follows from (22) that 

lm T(s, t, u) < e•. 

In conclusion the authors thank L. G. Zasta
venko for a discussion. 

APPENDIX 

We seek the imaginary part of the integral 

B (p2)= 4n2 ('ood~~2Ji(~p) ( flKi(!l~) )n (A.1) 
n P J 4nz~ ' 

" 

where p > nJ.t. 
We make the substitution (3 = ei1T/2x and use 

the relations 

K1(einf 211x) = - 1/2nH1<2>(11x); 

Then 

Using the equality 

J1(x) = 1i2[H1<2>(x) + H1<1>(x) ], 

we represent Bn ( p 2) in the form 

where 

(A.3) 

The integrand in (A.4) is similar and decreases 
exponentially in the lower half-plane, so that the 
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integration contour can be rotated from the line 
(- ia, - ia + co) to (- ia, - iao). We obtain (after 
making the substitution x = e-7ri/2y) 

Cn(P2) =- 4; i r dy y2K 1 (yp) ( lli~~y) )n. (A.6) 
a 

Let us consider Dn(p2 ), which we represent in 
the form of a sum 

where 

As shown in [ 4], when p 2 > ( np.) 2 the function 
En(p2) is equal to 

(A.10) 

where rln(p2)-phase volume of n particles at 
energy p. 

After substituting x = e-i/2y in the integral of 
(A.9) and making the substitution 

H . 2 () t<1l(e-mt2yp)= -2ilt(YP)+-Kt(YP); Bt 2 (e-nit2!lY) 
:rt 

2 
= -nKt(!lY), 

we obtain 

42a-ioo K() 
F n (p2) = ___!!____ ~ dy y2JI (yp) ( ll I llY )n 

p a 8:rt2y 

(A.ll) 

It is easy to note that the first integral in the right 
side of (A.ll) is equal to B~(p2 ), and the second 
is equal to - Cn ( p2 ) . 

We have thus obtained 

Bn (p2) = :rti (16:rt3) -n+!Qn (p2) + Bn • (p2), 

ImBn(P2 ) = 1/2:rt(16:rt3)-n+!Qn(p2), 

from which (9) follows directly. 

(A.12) 

(A.13) 
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