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It is shown that, in the problem considered, allowance for the exchange in the first approxi
mation of the perturbation theory is made very simply and improves considerable the agree
ment between calculation and experiment. The formula obtained also makes it possible to 
deal with the limiting case of classical exchange scattering. 

THE problem of the ionization of an atom by 
electron impact is basically very similar to the 
problem of the excitation of an atom. However, 
in making the calculations, it is necessary to use 
continuous spectrum functions, and the ionization 
problem is much more complex. For this reason, 
until very recently, calculations have been limited 
to the Born-approximation framework. Neverthe
less, near the threshold, which is the most inter
esting region from the point of view of applications, 
the electron exchange and polarization effects may 
play a considerable role. 

In the present work, it is shown that the 
method used earlier[!] to calculate the exchange 
effect in the excitation of atoms makes it possible 
to allow for this effect easily in the ionization 
problem treated in the first approximation of the 
perturbation theory. The polarization effects have 
not been considered in that earlier paper. How
ever, if the exchange is allowed for, the role 
played by the polarization is usually considerably 
less, a fact which has been mentioned many times 
in the literature. 

Let us now turn to the calculations. In the 
Born-Oppenheimer approximation, the total ioni
zation cross section averaged over spins is 

k' 
cr± = k ~ 1/(k',x)+ g(k',x) !2 dffik'dx, (2) 

the direct and exchange scattering amplitudes f 
and g being given by 

f (k'' x) = _21 \ ei(k-k')r•\Jlx (ri) '\jlo (rl) d,;t d,;2 ' (3) 
n .\ r12 

Here, k, k' and K are, respectively, the momenta 
of the electron approaching the atom, scattered by 
it and knocked-out of it; lf!o and 1/JK are the func
tions of the initial and final states of the atom (we 
shall use the atomic units throughout). 

Integration with respect to T2 in Eq. (3) is 
carried out in the usual way and gives the scatter
ing amplitude in the Born approximation: 

/(k',x) =2lk-k'I-2Vox(k-k'); 

Vox(q) = ('ljlxleiqrl'ljlo). (5) 

Integration with respect to T 2 in Eq. (4) is much 
more complex. However, as shown earlier, [ t] 
there is no need to calculate this integral exactly. 
It is sufficient to calculate the first term of the 
expansion of g in reciprocal powers of k, since 
the initial expression for the exchange scattering 
amplitude is valid only in the first approximation 
of the perturbation theory, and, consequently, only 
this first term of the expansion has any real mean
ing. 

To find this term, we shall use the asymptotic 
equation[!] 

~ eikr, 4n 
<p (r1) -·- d-r1 = -k2 eikr,<p (r2) + 0 (k-3), 

r12 
( 6) 

where cp ( r) is a function which varies slowly 
compared with exp ( ik · r). In contrast to the ex
citation problem, it is necessary to allow only for 
the fact that at high collision energies we can have 
ionization acts in which the electron knocked-out 
of the atom carries away considerable energy. In 
this case, 1/JK includes a rapidly oscillating factor 
which should be separated explicitly. Bearing in 
mind that 

'ljlx(r) =(2n)-'l•e"i 2><f(1+i/x)ei><rF(i/x; 1; -i(xr+xr)) 

(7) 
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and that at high values of K we have 

F(i I x; 1; -i(xr + xr)) = ,1 + O(x-iln x), 

we obtain from Eqs. (4) and (6) 

(8) 

g(k',x) =2lk-xi-2Vax(k-k') +O(k-3). (9) 

Finally, substituting Eqs. (5) and (9) into Eq. (2), 
we arrive at the following expression for the differ
ential ionization cross section: 

Formula (10) is interesting because, first of 
all, it makes it possible to go over simply to the 
classical limit. In fact, for K » 1, the matrix 
element VoK ( q), considered as a function of 
q = k- k' and K, has a sharp maximum at 
q = K.C 2•3] However, since k- K = k', Eq. (10) 
becomes 

da± = Srr. ( ..!__ ± ..!._)2 I V0,. ( q) 12 qdqdw,.x2dx. 
k2 \ q2 k'2 

(11) 

Carrying out the integrations with respect to wK 

and q (if q ~ K, the latter integration is carried 
out easily analytically) and averaging over spins, 
we obtain the following result: 

rr.[1 1 1 ] 
da=E 82- e(E'-e) + (E'-e) 2 de. (12) 

Here, E = K2/2, E = k2/2, and E' = E - Y2• For 
E » 1, Eq. (12) becomes identical with the result 
obtained usually[ 3J by the free-electron approxi
mation. 

The transition from Eq. (11) to Eq. (12) may be 
obtained more simply by the following formal as
sumption. Using the strongly resonant nature of 
I VoK (q) 12, we can replace in Eq. (11) the integra
tion with respect to q for fixed K by the integra
tion with respect to K for fixed q. Moreover, the 
integration with respect to K may be extended to 
all values of K, including the summation over a 
discrete spectrum. However, using the density 
of the system of functions lfiK• we have 

S IV ax(q) 12 dx = S ¢o(r')'ll'o(r) li (r- r')d-r d-r' = 1 

and, consequently, 

d _8rr.(.1 ,f )2 d 
a± - k2 -;z ± k'2 ,. x. (13) 

Here, again, we use the condition q ~ K. Averaging 
over spins leads directly to Eq. (12). 

Returning to Eq. (10), we must point out that a 
similar but more complex formula was proposed 
earlier by Peterkop[ 4J, who showed that, for a 

certain choice of the phase T/ ( k', K), the scattered 
electron functions for the exact direct and exchange 
amplitudes in the ionization case are related by 

/(k', x) = g(x, k'), 

which, in an obvious way, leads to the following 
expression for the scattering cross section 

da± = 4~~ exp{- id(k'; x)}V (k- k' 
k lk- k'l2 0>< ) 

,exp{- id(x, k')} I 
± lk-xl 2 Vok'(k-x) dw11:dx. 

(14) 

(15) 

Here, .6. ( k', K) = T/ - TJ 1 , and TJ 1 is the phase corre
sponding to the Born approximation. 

The considerations on which PeterkopC 4J based 
his choice of the quantity .6. ( k', K) 

= arg r ( 1 + i/k') cannot be regarded as fully 
satisfactory since they are associated with the 
behavior of the expression (5) near the threshold. 
This selection can, however, be justified by noting 
in addition that, if K » 1, precisely this definition 
of .6. (k', K) makes both Eq. (15) and Eq. (10) give 
the correct transition to the classical limit. How
ever, compared with Eq. (10), Eq. (15) is not only 
more complex but has another deficiency. Both 
formulas are obtained on the assumption that, after 
scattering, the system is described by the product 
of a plane wave and a Coulomb function of the con
tinuous spectrum. It is clear that this approxima
tion is closer to an exact description of the problem 
if the plane wave corresponds to the faster of two 
electrons. In the second term of Eq. (15), the 
plane wave corresponds to the slower electron, 
and the Coulomb function to the faster electron, 
since when the exchange is allowed for, k' is 
always greater than K. This gives rise to an ad
ditional error whose importance increases with 
the role of the exchange term. 

Considering now the calculation of the total 
ionization cross section, we shall recall that 
Eq. (10) is rigorously valid only for sufficiently 
high collision energies. The use of this formula 
for calculations near the threshold, like the use of 
the standard Born formula in this region, is only 
a more or less successful approximation. There
fore, we shall not calculate the total ionization 
cross section using Eq. (10) exactly, but we shall 
replace the latter by a very similar but much 
simpler expression 

k' ( 1 1 )2 ( ) 
da± = 4T -q2± k2- ,_2 IVO><(q) 12dwk·dx. 16 

This substitution is suggested by Eq. ( 11). The 
substitution may be justified for high-energy colli-
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sions by the following considerations. The main 
contribution to the cross section is made by colli
sions with small energy transfer. However, in 
this case, K has little effect on the magnitude of 
the exchange term which, in turn, contributes only 
a small correction to the main effect. In the oppo
site limiting case of the maximum possible energy 
transfer, due to the condition q ~ K and the energy 
relationship 

k2 - 1 = k'2 + x2 = 2E' (17) 

region makes only a small contribution. There
fore, bearing in mind what has been said above, 
we can, in general, neglect the quantity K2 in the 
denominator of the exchange term so that Eq. (10) 
becomes identical with the formula for the excita
tion probability. Calculations show that the cross 
section obtained then in the region of the maximum 
is about 2% smaller than that given by Eq. (6). At 
high energies these results differ even less. This, 
once again, confirms the weak dependence of the 
expression considered here on the terms quadratic 

we have I k- K 12 = K 2, while it follows from Eq. in K. 

( 12) that k2 - K2 = K2 + 1 (if the exchange is al-
lowed for, the range of K is given by the inequality 
0 ~ K2 ~ E'). Thus, Eq. (16) is identical with 
Eq. (10) also when K » 1. 

For low collision energies, this substitution 
again does not give rise to any singularities and 
its validity in the immediate vicinity of the thresh
old is self-evident. Moreover, for small energy 
transfer, the angular distribution of the electrons 
knocked-out from the atom is close to isotropic. 
Then, it can be easily shown that the expansion of 
the quantity I k - K 1-2 as a series in powers of K, 

after averaging over all directions of the vector K, 

does not contain terms linear in K. The quadratic 
terms, as shown by the calculations, are small, 
even at an energy of 40-50 eV corresponding to 
the maximum cross section, for the values of K 

which are of prime importance. Therefore, we 
may expect that both formulas always give similar 
results (this was confirmed by detailed rough cal
culations). However, calculations of the velocity 
distribution of the knocked-out electrons and of the 
total ionization cross section, by means of formula 
(16), in contrast to formulas (10) and, in particular, 
( 15), need only the same number of calculations 
as those for the case without allowance for the 
exchange. 

From the point of view of the calculation of the 
total ionization cross section, there is no need to 
worry about the correct approximation in formula 
(10) in the region of large values of K, since this 
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Cross section for the ionization of the hydrogen atom 
by electron impact: 1) calculation without allowance for 
the exchange; 2) calculation, using Eq. (15), carried out by 
Peterkop; [•] 3) calculation, using Eq. (16); 4) Fite and 
Brackmann's experiments. [6] 

The table lists the cross sections cl, cf, 7f cal
culated using Eq. ( 16), as well as the ionization 
cross section rJ found without allowance for the 
exchange. The latter is in complete agreement 
with the calculations carried out earlier by Dal
garno ( cf. [5]). The figure shows the values of 7f 

calculated without allowance for the exchange, 
Peterkop's results and the results of Fite and 
Brackmann's measurements [G]. It is evident from 
the figure that allowance for the exchange by means 
of Eq. (16) improves the calculated results without 
going outside the framework of the first approxi
mation in the perturbation theory and without com
plicating the calculations compared with the 
exchange-free case. This result is particularly 

Cross section for the ionization of the hydrogen atom by electron 
impact (in 1ra5 units) 

E, eV I a+ a- a a liE, eV I a+ 
-
a 

'15 0.26 0.0'1 0.07 0. '10 '100 '1.09 0.59 0. 72 0.85 
20 '1.2::1 0.'12 0.40 0.60 '150 0.78 0.50 0.57 0.64 
25 '1.70 0.28 o:63 0.92 200 0.61 0.42 0.47 0.52 
30 1.87 0.40 0,74 '1.09 250 0.50 0.37 0:40 0.43 
::15 1.89 0.49 0.83 1.16 300 0.42 0.32 0.35 0.37 
40 1,86 0,55 0.88 1.19 400 0.32 0.27 0.28 0.29 
50 t.n 0.62 0.89 1.17 600 0.22 0.19 0,20 0.21 
60 1.56 0.64 0.87 '1.11 1000 o: 14 0.13 0.13 o: 13 
80 1.30 0.63 0.80 0.97 
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satisfactory if we bear in mind that the symmetric 
and antisymmetric cros·s sections a+ and a- for 
low collision energies differ considerably from a. 

It is possible that because of the inconsistency 
of the exchange term in Eq. (15), some improve
ment in the results compared with Peterkop's cal
culations is not accidental. 

Finally, we note that formulas of type (10) or 
(16) can, of course, be applied to the calculation of 
the ionization cross section of any atom. We note 
also that in the case of an atom having terms of 
various multiplicity, the ionization cross sections 
not averaged over spins may be useful for the 
extrapolation of the excitation functions calculated 
for discrete levels to higher values of the principal 
quantum number, in the same way as was done by 
McCarroll [ 5] for hydrogen. 

In conclusion, the author expresses his grati-

tude to L. A. Va1nshte1n for his valuable discus
sions of this work. 
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