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The methods of quantum field theory are used to investigate the properties of a ferromagnettc 
metal. The interaction between Fermi excitations and spin waves is examined and their con
tributions to the temperature dependence of the thermodynamic quantities are derived. The 
condition for occurrence of ferromagnetism in a metal is also determined. 

J. In an earlier paper [1] we developed the theory 
of an isotropic ferromagnetic Fermi liquid. Here 
we extend the results to the case of a ferromag
netic metal. 

Our fundamental assumption is the one which 
lies at the root of Landau's theory of a Fermi 
liquid, [2] and has received support from a micro
scopic analysis [3]: that the switching on of the in
teraction between the fermions does not alter the 
classification of the energy levels of the system. 
For the electrons in a crystal this statement re
duces to the assumption that the Fermi excitations 
of the system, like the levels of the corresponding 
one-electron problem, form energy bands; in the 
case of a metal some of these will be incompletely 
filled. The transition metals, with which we shall 
be concerned in this work, are characterized by 
the presence not only of bands of conduction-elec
tron ( s-electron) excitations, which originate in 
the atomic valence electrons and are distinguished 
by a high mobility, but also of d-bands; the excita
tions of the latter originate in the incompletely 
filled inner shells of atomic electrons, and have 
only a low mobility. As a result the d-bands are 
considerably narrower than the s-bands. We shall 
assume that the metal considered is ferromagnetic, 
i.e., that the degeneracy in the energy of the ex
citations corresponding to spin orientation is 
lifted and that there is a finite mean magnetic mo
ment. As a result, the Fermi surfaces for excita
tions of different spin orientation do not coincide 
even when they belong to the same band. 

2. As shown by Abrikosov [4], the one-particle 
Green function of the electrons in a metal can be 
written in the form: 

- - \ d'p 
Ga~(x, x') =- i <T(\j)a(x)ljl~+(x'))) = J (2n)' eip(x-x') 

(1) 

X Gal'> (p, r, r')'= \~ eip(x-x') "5' Gn (p) Un (p, r, a) 
· (2n) 4 ";" • 

X Un • (p, r\ ~). 

Here and subsequently p == ( E, p ) is the energy and 
pseudo-momentum, px == p · r - Et, d4p == dEdp, 
with the p-integration taken over an elementary 
cell of the reciprocal lattice of the crystal; n in
cludes the two indices v, which numbers the ir
reducible representation of the little group of the 
vector p, realized by the functions un ( p, r, a ) , 
and s, which numbers the functions of a given 
representation. 

We notice that the functions un ( p, r, a) depend 
on both the quasi-momentum p and the energy E, 
and so cannot be eigenfunctions of any Hamiltonian. 
Their fundamental property is that in the repre
sentation defined by them the Green function is 
diagonal. It follows from the results of [4] that if 
Po lies on the Fermi surface of the n-th band and 
there is no exact degeneracy, then in the limit 
p - p 0, E - 0 the Green function has the form 

G ( ') an(Po)un(p,r,a)un*(p,r',~) 
a~ p, r, r = (2) 

8 + 1.t - 8n (p) + io sign 8 

where f.1 is the chemical potential. 
Since the functions un ( p, r, a) eipx form a 

complete set of mutually orthogonal functions, not 
only the Green functions but all other quantities of 
interest in quantum field theory can be decom
posed in terms of them. These quantities now de
pend not only on the "momenta" (as in the iso
tropic case) but also on the band indices n; how
ever, provided we work with the complete Green 
functions (to which the above remarks refer) the 
only change necessary in the diagram technique 
consists in carrying out, in addition to an integra
tion over the "momenta" of the internal li.nes, a 

1032 



ON THE THEORY OF FERROMAGNETISM IN METALS 1033 

summation over the corresponding band indices. 
3. We shall be interested in the singularities 

of the vertex part r ( p1, p2; k) (defined as in [t] ) 
as a function of the "momentum" transfer 
k = ( w, k ); these correspond to spin waves. The 
relevant singularities occur in the transverse spin 
components of r. Without going through the devia
tion, which is completely analogous to the one used 
for an isotropic Fermi liquid [tJ, we write down the 
expression for the pole term of the transverse 
component of r, neglecting magnetic interactions: 

II 
Dz+m_n_s+(pi, P2; k) 

=Gz+(pi)Gn-(PI+k)fz+m_n_s+(PI, P2; k) 

X Gm-(P2+k)Gs+(p2) 

= i~z+(pl, k)D(k)~m-(P2, k)bznbms; (3) 
I 

D(k) = (w- 2!J,ofl- a;/mk;k1 + ib)-1; (4) 

~z±(p, 0) = Y~J<J / Mo[Gz+(p) - Gz-(p)], 

Mo = - i[to lim~ ~ d~p ei•~ [Gn+(p)- Gn -(p)]. (5) 
hO n' (2:rt) 4 

Here M0 is the magnetic moment of the system at 
zero temperature, f.l.o is the Bohr magneton, and 
the signs ± in r and in the Green functions refer 
to the spin directions. The quantities ~I (p, k) 
are the amplitudes for emission (absorption) of a 
spin wave by the Fermi excitations. 

An analysis similar to the one carried out in [1] 

shows that the expansion of the quantities of inter
est at the pole in powers of k preserves their 
analytic form at least up to terms of fourth order. 

We shall show that the quantities afj do not 

depend on the indices l and m. To do this we use 
the integral equation which connects the irreduc
ible vertex part r(t) with r: 

(!l 
fzmns(PI; P2; k) = fzmns(PI; P2; k) 

_ . ~ \ d~q (I), , • 
~,~,) (Z:rt)• fzm ns (p~, q, k)Gs•(q)Gm•(q + k) 

X fs'mm's(q, P2; k). (6) 

We substitute in (6) our expression for the relevant 
component of the vertex part, which in the absence 
of a magnetic field has the form 

_ !to [~z+ (pi)- l:z- (p!) Hl:m + (P2)- ~m- (p2)] 
- M~. w - a;/"'k;k1 + ib 

Here L;z ( p) is the irreducible electron self-en
ergy part; and we have set w = 0 and k = 0 every
where except in the denominator, which is respon-

sible for the pole. Now if we use the following re
lation (which is a consequence of the fact that rCO 
is the functional derivative of L; with respect to 
G) 

~z+(p)-~z-(p) 

. "'' i d"q (I) = - ~ L..i,J (Z:rt)" fz+m_l_m+ (p, q; O)[Gm + (q)- Gm -(q)] 
m 

and neglect the first term on the right-hand side 
of (6) near the pole, we see immediately that a?J? 

lJ 
= aij. For the same reason O!ij must also be in-
dependent of Pt and P2· 

4. We now consider the effect of magnetic ani
sotropy. Since the strength of the relativistic in
teractions is of order 10- 3-lo- 5 times that of the 
exchange interactions, the former can be treated 
by lowest-order perturbation theory. 

Owing to the nonconservation of spin in the 
presence of magnetic interactions, we have, be
sides GJI m z m ( p 1, P2; k) two other transverse 

+ - - + 
components: 

II 
Gz_m_z+m+ (p~, p2; k) = i~~.-(p!, k)D+(k)~m-(P2, k). 

We shall find it convenient to write the irreducible 
part of the anisotropic interaction (that is, the part 
irreducible with respect to spin waves) in the form 
S~'Y llij S~0 . Then if we define 

II (k) = Sva -saviii;JSB6iso~+, 

the quantities D, D± can be expressed in terms of 
n and B± exactly as in the isotropic case [t]. 

Suppose we expand llij in powers of the small 
vector k. For k = 0 the analytic part of llij is a 
second-rank tensor with the symmetry of the 
crystal. For a uniaxial crystal, in which the mini
mum of the energy corresponds to orientation of 
the magnetic moment along the crystal symmetry 
axis (we are assuming that the external magnetic 
field is also oriented along this direction, which 
we take as the z-axis) llij is diagonal, with llxx 
= llyy = 4{3f.J, 0M0• Hence the analytic parts of TI 
and B± are given for k = 0 by 

The nonanalytic terms in n arise from the 
magnetic dipole interaction of the electron spins, 
sine e this contains the Green function of the mag
netic field. The calculations are now similar to 
those carried out in [1], for the isotropic Fermi 
liquid, the only difference being that we must now 
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expand the Green function of the magnetic field 
Fij ( x 1, x2 ) not in a Fourie.r integral but in terms 
of the functions un ( p, r) e1PX: 

Fzmns(Pi, p2; k)= ~ dr,dr2 (::)3uz(p,, rt)un"(p,+k, ri) 

X F ( w, q) exp[i ( q- k) (r,- r2) ]um(P2 + k, l'2) u; (p2, r2). 

Since the product uz(p1, rt)un(P1 + k, rt) has the 
spatial periodicity of the crystal lattice, we can 
expand it in a Fourier series: 

uz(p~, r,)un*(p, + k, r,) = ~Bx1n(p 1 , k)exp(iKxri), 

" where the summation is taken over all vectors 
KK of the reciprocal lattice and 

B,ln (Ph k} = _1_ ~ dr1 exp (- iKxr!) Uz (p,, ri) Un • (p, + k, r,), 
Vc 

(the integral here is to be taken over the elemen
tary cell of the reciprocal lattice, the volume of 
which is denoted by vc ). After some simple 
manipulations we obtain the following expression 
for the Green function of the magnetic field: 

Fzmns(Pb P2, k) = ~ B,ln(p~, k)[B,m•(p2, k)]*F(w, k- K,) 

" 
= F(w, k)<h6m• +Azmns + F(w, k)o(k)+ o(k). (7) 

Bearing in mind that Fij ( k) = 41f ( kikjlk2 - Oij) 
we see that for small k we may neglect the last 
two terms in (7). The second term is a constant, 
which we saw above was equal to 4!3~LoM 0 • Hence 
we can finally write 

II (k) = 2~JloMo + 4:n:JloM0k+k_ I k2, 

B±(k) = 4:n:Jl0llfok±2 I k2;_ (8) 

-~+AS~ D (k)=~&L__ 
D(k)- w2- w2(k)' ± w2- w2(k)' 

(!)2(k} = A2(k} - B+(k)B~(k}, 

A (k} = 2JloH + a;jk;kj +II (k). (9) 

5. So far we have assumed that the system ex
hibits the phenomenon of ferromagnetism, without 
concerning ourselves with the criteria for its oc
currence. We now write down the condition for 
ferromagnetism to occur (the derivation is the 
same as for the isotropic case) in the form of a 
relation between the parameters of the paramag
netic state at the moment of onset of ferromag
netism: 

d' ' ~z+(p)-~z~(p)= -2:n:L; ~ (Z:) 4 am2 (p')fz~m_!_m+(p, p') 
m 

X 6 ( e') 6 (em (p') __:_ 11) (~m + (p')- ~m- (p') ], 

f"'(p, p') = 1 lim I'(p, p'; k}. 
k/ L"'· W-+0 

(10) 

The condition for the appearance of ferromag-

netism is the appearance of a nontrivial solution 
of the system of homogeneous integral equations 
(10) for !:[(P)- !:z(p). It can be shown that when 
this condition is fulfilled the paramagnetic sus
ceptibility of the system tends to infinity. 

6. We now consider the electronic contribution 
to the magnetic moment and susceptibility of a 
ferromagnetic metal at zero temperature. 

As shown by Dzyaloshinskil [5], the magnetic 
moment of a system of electrons in a crystal, if 
we neglect the effects of magnetic anisotropy, is 
given at T = 0 by the expression 

M 0 = Jlo ~ ~ ~(8 (11- en+(p}}- 8 (!l- En~(p) )] 
n (2Jt)3 

= (2Jt)~3Jlo[l~~ + V+J?- v_.FJ; 

{ 0, X< 0 
8(x}= 

1, x> 0 
(11) 

where Q is the volume of an elementary cell of 
the reciprocal lattice, v! is the sum of the vol
umes enclosed by all the Fermi surfaces corre
sponding to the spin direction in question, and l 
is some integer. A calculation similar to the one 
carried out in [t] gives the correction to Eq. (11) 

introduced by the relativistic magnetic interac
tions; it is 

S dk A(k)-w(k) 
bM0 =- !lo '(Znj3 w(k) (12) 

with A(k), w (k) given by formulae (9). 
If we neglect the effects of magnetic aniso

tropy, the longitudinal magnetic susceptibility x 
is determined solely by the interaction of the 
electronic excitations on the Fermi surface. From 
(11), 

X~t = (oM) = Jlo2 L; (~ dSn+Bn+- ~ dS,.~Bn~). (13) 
iJH' 11 n ' ; 

The subscript 1l indicates differentiation at con
stant chemical potential, and we have defined 

Bn± = ~- Oen±(p) 
!lo iJH ' 

~ dSn±Bn± = ~ (::) 3 b(!l- en±(p) )Bn±(p). 

Since the number of electrons in the system is 
fixed, the actual magnetic susceptibility is given 
by: 
_ (aM\ ( ~) = -( iJN_)2 I (oN_) x - x"' + a ) \ aH , X~t a !I I a.. n' Jl H , N 1-' r ( 14) 

where N = N ( /.1, H) is the number of particles at 
T = 0, which, in agreement with [2J, is given by 
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Introducing the notation C~ = 1 - BE~ (p )/Bp, 
we write our final expression for the susceptibility 
in the form 1) 

X= flo2{L (~ dSn+Bn+- ~ dSn-Bn-) 
n 

- [ L 0 dSn+Bn+ + ~ dSn-Bn-) T 
n 

x(L0 ds"+c"++ ~ ds,.-c"-)T 1
}. (15) 

n 

The quantities B~, C~ can be expressed in terms 

of Landau's function[2] 

1:~0 (Pt, P2) = (am .. an Pa.,."'an0 ) 't.[' m .. n pmyno (Pt. P2) le,=e,=O 

by means of the following two systems of integral 
equations: 

Bm+(p)+ '5', [~ dSn+fJ':t~(p, p')Bn+(p') 
n 

+ ~ dSn-f~t~(p, p')Bn-(P') ]= 1, 

Bm-{P)+ L [~ dSn+f~2~(p, p')Bn+(p') 
n 

+ ~ dSn-f=(p, p')Bn-(P') ]= -1; 

Cm+(p)+ L U dSn+fJ':t~(p, p')Cn+(p') 
n 

+ ~ dSn-J~~(p, p')Cn-(P')] = 1, 

Cm-{P)+ Lu dSn+f~2~(p, p')Cn+(p') 
n 

It is obvious from (15)-(17) that the magnetic 
susceptibility of a ferromagnetic metal is ano
malously large owing to the contribution of the 

(16) 

(17) 

l)In ['] the term (aMJap.)H (ap.JaH)N was omitted in the ex
pression for X· Hence the correct formula for the magnetic sus
ceptibility of a ferromagnetic Fermi liquid, which should re
place (A.21) of['], is: 

d-band excitations, with their large density of 
states at the Fermi surface. 

7. We can use the technique employed in [t] to 
establish the following relation for the magnetic 
moment per unit volume of a ferromagnetic metal 
at low temperatures: 

'r dk aw(k)/&H 
M(T) = M(O)- .l (2n)3 exp {w(k)/T}- 1 

n2 [ f)2Z &Z a 1 ( &Z ) J I + B T2 &e &H - 8H &e n Ofl e=o (18) 

where 

Z(e, fl,H)= L~ (::) 3[8(e+fl-en+(p)) 
n 

+S(e+fl-en-(P))]. (19) 

The second term in the square brackets in (18) 
arises because, if N is held constant, the chemi
cal potential changes when we go to finite temper
atures.2l 

The specific heat due to Fermi excitations and 
spin waves is given by 

n2 &ZI a\ dk w(k) 
C=3T &e e=o+ BT .l (2n) 3 exp{w(k)/T}-1" (20) 

Owing to the large density of states at the Fermi 
surface of the d-electron band excitations, these 
give the dominant contribution to the heat capacity 
and magnetic moment of a ferromagnetic metal. 

We shall not write out here the expressions for 
the contributions of the spin waves to M ( T) and 
C in different temperature regions (they are given 
in [SJ ); we merely compare them with the.contri
butions of the Fermi excitations, which are of 
order 

where a is the lattice constant, and EF the 
chemical potential measured from the bottom of 

2 )This term was omitted in ['] in the formula for M(T). The 
correct expression for the magnetic moment in the isotropic 
case is: 

dk aw (k) 1 an T" { a 
M(T) =M(O)- ~ (2:t)3 exp{w(k) IT} -1 + 12 all (m+P+ + m_p_) 

X _!_(m+P+ + m_p_) }· 
all 
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the narrowest band. In the temperature region 
T » 4rrf.1 0M 0, 211 0 ( H + {3M 0 ) we find 

J.to ( T )''' bMs "' ~ ec , 1 ( T )'" c."'- --
a3 8c 

where ®c is the Curie temperature; hence the 
contribution of the Fermi excitations to the speci
fic heat is larger than that of the spin waves, 
while the reverse is true of the contribution to the 
magnetic moment. 

For 211 0 ( H + {3M 0 ) « T « 4rrf.1 0M 0, 

J.to ( T )''' ( T )''' 
Mfs "' (13 4:n:J.toMo 8c ' 

c. "' ~ T (_!_)'!, 
a3 4:n:J.toMo 8c · 

Although both contributions to the magnetic mo
ment are of order T2, the spin wave contribution 
of the spin waves to the heat capacity is small 
compared to that of the Fermi excitations. 

Finally, in the region 

2!-lo(H + ~Mo) ~ T, 4:n:f!oMo, 

T ~ 2!-lo(H + ~Mo), 4:n:f!oMo 

the spin wave contribution is exponentially small, 
and the temperature dependence of all quantities 
is determined by the Fermi excitation spectrum. 

An analysis similar to the one carried out for 
the isotropic case [i] can be given for a metal too, 
to rule out the possibility of the spin waves chang
ing the Fermi spectrum in such a way as to render 
the above results invalid. 

In conclusion the author would like to express 
deep gratitude to I. E. Dzyaloshinskil for his in
terest in this work and for much helpful advice. 
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