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The Lie equations for the three-dimensional rotation group are converted by introduction of 
additional variables into a set of three uncoupled equations for the determination of a single 
unknown function. The equations are solved by standard methods and the generating function 
for the representation coefficients is obtained. The same method is then applied to the 
Lorentz group and it is shown that the theory of finite dimensional representations follows 
from elementary properties of differential equations. 

1. INTRODUCTION 

THE infinitesimal transformations method of Lie 
has been widely used for the determination of 
representations of continuous groups. If N is the 
dimension of the representation, ai ( i = 1, ... , n) 
-the parameters of the group, and Ii the infinites
imal operators, then the Lie method yields a sys
tem of equations of first order of the form: 

(i,j=i, ... ,n; r,s=i, ... ,N) (1) 

for the determination of the functions ur, which 
are directly related to the representation coeffi
cients. 

Although the derivation of Eq. (1) is not com
plicated, considerable difficulties are encountered 
in the solution of these coupled equations, because 
the functions sji (if the parameters were chosen 
in an unfortunate manner) are extremely compli
cated and, moreover, the number of functions to 
be determined increases with the dimension of the 
representation. For these reasons the represen
tations are usually obtained by other means and 
not by solving these complicated equations. 

In this article we show that for the case of two 
continuous groups with which every physicist is 
familiar-namely the three dimensional rotations 
group 0 3 and the proper Lorentz group Lp-the 
Lie equations can be put into a very convenient 
form and they can in fact be solved if the matrices 
Ii are replaced by certain analytic operators in
troduced previously by the author. [1] In the case 
of 0 3 these matrices have the form 

a 
M 1 = J cos A - sin A- , 

{}), 

a 
M2 = l sin A+ cos A-, a A 

a 
M3 =- i---. a A 

(2) 

It is assumed that the new operators act on the 
function u constructed out of the functions ur ac
cording to the rule 

Thus, by introducing an additional variable A., 
the Lie equations for 0 3 are reduced to a sequence 
of three uncoupled equations for the determination 
of the single function u. These equations take on a 
particularly simple form if one chooses for the 
rotation parameters the Euler angles; the equa
tions may then be easily solved using the standard 
theory of equations of first order. In the more 
general case, when the parameters are not ex
plicit, it can be shown by an analysis of the struc
ture of the equations that if u (1/2 ) is a solution for 
J = % then [u(1/2)] 2J is a solution for an arbitrary 
(integer or half integer) value of J. This makes 
it possible to construct representations of higher 
dimensions from the two-dimensional representa
tion. This second method is applied to the Lorentz 
group. [2] 

2. SOLUTION IN THE CASE OF 0 3 

Let the matrix T (g), corresponding to the 
element g of the group, act on an arbitrary vector 
a and transform it into the vector u (g) = T ( g )a. 
It follows from the definition of the representation 
that u (f) = T ( fg- 1 ) u (g). By differentiation of 
this equation with respect to ai (f) we obtain the 
equation 

1014 
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au(f) = ~ aT(jg-1). avi(fg-1) u(g), 
a a;(!) j avJ (fg-1) a a; (f) 

where 'Yi ( fg- 1 ) are the parameters of the ele
ment fg- 1• If a 1, a 2, ••• and {3 1, {3 2 , ••• are re
spectively the parameters of the elements f and 
g- 1 then 'Yj may be written in the form 'Yj ( a 1, 

a 2 , ••• , {3 1, {3 2 , ••• ). Setting in the last equation 
g = f we obtain the Lie equations: [2] 

!!!:_ = Lsi;Ii u, sii = [ avj(fg-l) J (4) 
a a; j a a; (f) g=f • 

The symbol u in these equations is used for con
venience and stands for a vector, and not for the 
function u of Eq. (3). 

It is convenient to discuss these equations after 
performing the above-mentioned reduction. In 
what follows we assume that this has been done. 
A particular solution of the equations is obtained 
if all components of the initial vector a, except 
for the m-th component, are set equal to zero. 
The general solution will be a linear superposition 
of 2J + 1 particular solutions of this type with 
arbitrary coefficients. 

For one of these particular solutions, say the 
m-th, the initial condition is of the form u ( 0, 0, 0) 
= eimA. It is clear that if only one of the equations 
is considered then this initial condition is not suf
ficient to determine the solution. To eliminate 
from the solution all arbitrary functions it is 
necessary to take into account all three equations, 
one after another, in the following manner. In the 
first equation we set ai = 0 for i ;r 1. The initial 
condition then determines u ( a 1, 0, 0) as a func
tion of a 1 and A. We then take the second equa
tion and set ai = 0 for i ;r 1, i ;r 2. The function 
u ( a 1, 0, 0) serves as the initial condition for this 
equation and determines u ( a 1, a 2, 0) as a func
tion of a 1, a 2, A. Continuing in this fashion we 
obtain the complete solution, free of any arbitrari
ness, provided that at no stage of the process does 
the initial data fall into the eigen manifold. Al
though strictly speaking the above considerations 
apply to the group 0 3, the general features of the 
initial value problem are the same in the case of 
an arbitrary continuous group. 

Following these general remarks we pass to the 
solution of Eqs. (4) in the case of 0 3 by choosing 
the Euler angles e, <fJ, cp as the rotation parame
ters. The main difficulty in carrying out the pro
gram consists in the calculation of the functions 
Sji' Instead of evaluating them directly as func
tions of e, <fJ, cp we use a somewhat indirect pro
cedure and calculate them first as functions of 
three symmetric parameters that are often used 

in the literature. They are the components a 1, 

a 2, a 3 of a vector in the direction of the axis of 
rotation and whose length is equal to the angle of 
rotation. From the definition 

Sj1 = lim e-1Vi ( a1 + e, a2, a3; -a1, -a2, -a3) 
e-+0 

we obtain after some calculations 

S;; = e;2 + ( 1 - e;2) w-1 sin w, 

S;i = e;eJ(1- w-1 sin w)- e"w-1 (1- cos w), 

Sii = e;eJ(1- w-1 sin w) + ekw-1 (1- cos w) (5) 

( i, j, k-cyclic ), where e 1, e2, e 3 are the direc
tion cosines of the axis of rotation, and w is the 
angle of rotation. 

The Lie equations for 0 3 can now be written 
out explicitly and the first important result that 
follows from them is 

This relation has a simple geometrical meaning 
and substantially simplifies the calculations. 

(6) 

To solve the equations it is necessary to re
turn to the variables e, <fJ, cp, which are connected 
to the homogeneous Euler parameters 

w 
\;; = e; sin 2 (i = 1, 2, 3), 

by the relations 

w x = cos 2-

e . 
i\;3 +X = cos-- e'N+cpJ/2 . 

2 

After the change of variables the equations as
sume the form 

aujaqy =- auja'A, 

au . [ . au l _ = - i sm e J u cos ('A - qy) - sm ('A - qy) -a, 
a"' " --

au 
-cos e a" , 

( au ) _ . . au 
- = - lf U Slll A- l COS ~- -- . 

ae ~=<p=o a" 

(7a) 

(7b) 

(7c) 

We solve these equations by starting with the 
last one. The differential equations for the char
acteristics of Eq. (7c) have the form 

d'A du 
idS=~~=- , 

cos 'A J u sin 'A 

for which two independent integrals are 

uxJ (x2 + 1)-J =A, x+~e-iB =B. 
x-i 

Consequently the general solution is 
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u(8,0,0) =x-J(x2 +1Vf( x+~ e-ie) 
x-~ 

where f is an arbitrary function, K = ei\ and 
IJ! = q; = 0. The form of f is determined by the 
initial condition u ( 0, 0, 0) = Km, so that 

( 8 8 )J-m 
u(8, 0, 0) = x-J - xsin:z- +cos 2 

( 8 8 )J+m 
X x cos 2 + sin i . (8) 

This will serve as the initial condition for the Eq. 
(7b) if q; is set there equal to zero. By standard 
techniques t) we find 

u(8, ¢, 0) = e-im¢u(8, 0, 0). (9) 

Equation (7a) presents no problems. It simply 
states that u is a function of A. - q;. Thus the 
solution of the initial value problem for Eqs. (7a) 
-(7c) is 

u(8, ¢, q>) = e-im.P(xe-1'P)-J (- xe-icp sin-~+ cos--8 r-m 
2 2, 

( 8 8 )J+m X xe-icp cos 2 + sin 2 (10) 

The function u ( 8, IJ!, q;) may be looked upon as 
the generating function for the coefficients of the 
representation. Indeed, if it is expanded in powers 
of K then the coefficient of Km', multiplied by the 
quantity 

[ (J- m')! (J + m') !)'iz( (J- m)! (J + m) !]-'iz, (11) 

gives the matrix element Dm'mJ of the represen
tation. The necessity of multiplying by the above 
factor is due to the change in basis, connected with 
the use of the operators (2). 

3. ANOTHER METHOD OF SOLUTION FOR 0 3 
AND ITS GENERALIZATION TO THE 
LORENTZ GROUP 

In order to successfully apply the above method 
to the group Lp it is necessary to find a set of 
parameters in terms of which the Lie equations 
can be easily solved. Since the author does not 
know whether such a set of parameters exists in 
the case of Lp, it is useful to formulate the theory 
in such a manner that knowledge of specific pa-

l)The general solution of (7b) for 1p = 0 is 

u(9, ljl, O)=x-J( x-cot:r ( x+tan:r 

X g ( x +t.an(9 / 2) e-'~)' 
X- cot (9 /2) 

where the arbitrary function g may depend on 8 as a parameter. 

rameters is not needed. This is not hard to ac
complish by dividing Eqs. (4) by u. The function 
ln u then satisfies the inhomogeneous equations 
(k= 1, 2, 3): 

a~u f)~u 
i -fJ-- + (St"- sin "A- 82,_ cos "A+ iS3~t) --a,_ f)'), 

(12) 

From here it is seen that if u (1/ 2 l is a solution of 
the equation for J= t;2, then uCJl=[u(1/ 2lj2J. This 
conclusion, clearly, does not depend on the choice 
of the parameters. This then makes it possible to 
construct higher dimensionality representations 
from the two-dimensional representation D112 in 
the following manner. 

Let the matrices D1/ 2 be of the form (~g) and 

let them operate on an arbitrary vector (~ ). Ac

cording to our rule the function u (t/2 l should be 
taken in the form 

u<'lz) = ei~/2 (a~ + ~T]) + e-il./2 ( v£ + 6T]) ' 

and, according to the remark just made, we have 

u(Jl = [eil./2 (a~+ ~TJ) + e-il.f2 (y~ + 6T]) )2J. (13) 

From he're it is easy to obtain the matrices DJ if 
the initial vector is known. Setting in Eq. (13) 
a = 6 = 1, {3 = y = 0, we see that the components 
of the initial vector a are 

am= £J+ml]J-m(2j)! / [ (J + m)! (J- m) !], 

which up to factors coincides with the quantities 
obtained from the standard theory. 

It is interesting to see how the two approaches 
are related. If we expand u CJl in a power series 
of the form 

j 

~ eil.m' amDm'm, 
m,m' 

we obtain 

n:n'm= ~ (J+m)!(J-m)! 
8 s! (J + m- s)! (J- m'- s)! (m'- m + s)! 

X aJ+m-soJ-m'-sllm'-m+•y•. 

After multiplication by the factor (11) this quantity 
coincides with the conventional expression for it. 
It is easy to see that the procedure may be in
verted and the representation D112 may be ob
tained from D1 by extraction of the square root 
of the homogeneous quadratic form in ~ and 17. 

The above described method can be directly 
generalized to the case of the group Lp. Although 
none of the results to follow depend on the choice 
of the parameters it is inconvenient to keep them 
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arbitrary from the very beginning. We therefore 
choose six parameters ai, the first three of 
which are the projections of the "rotation vector" 
of the Lorentz frame 0' relative to the frame 0, 
and the last three of which coincide up to factors 
of 1/c with the components of the velocity of the 
frame 0' with respect to the frame 0. If the Ii 
( i = 1, ... , 6) stand for the corresponding infini
tesimal operators then, as is known, we may form 
the six linear combinations 

which satisfy the commutation relations 

[Ap>, A,P>] = A,<t>, [Ap>, Ah<2>] = AP> 

( j, k, Z-cyclic ) , with any of the A (t) commuting 
with any of the A (2). Therefore the matrices A CO, 
A (2) may be replaced by the operators (2); it is 
only necessary to use two different variables >..1, 
A.2 and two values of J in the construction of 
Mk(t) and Mk(2l. The Lie equations for Lp then 
take the form 

(14) 

The solution of these equations will be denoted 
by uCJ1J2 l(A.1, A.2 ). If one replaces A.1, A.2 by -A.t, 
-A.2 and goes over to the complex conjugate of 
Eq. (14) one sees easily that the quantity uCJ1J2l* 
( -11.1, ->..2) satisfies the same equation with the 
operators Mk (1) and Mk (2) interchanged. Since 

the original function is unchanged by this opera
tion it follows that the representation nJ2J 1 is 
equivalent to the complex conjugate of nJ1J2. 
This result is well known. 

Further, dividing Eq. (14) by u and thus con
verting it into a system of inhomogeneous equa
tions 

ainu ainu -a-- + (uti sin A.t - u2i cos A.t + iu3;) -a--
a; A.t 

+ ( .. ' + • . * ainu 
Uti sm 11.2 a2i cos /..2 + ~U3; ) --at... 

we see that 

Consequently representations of higher dimension
ality may be obtained from nt12 0 and n° 112 by 
the method used in the case of 0 3• 
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