
SOVIET PHYSICS JETP VOLUME 20, NUMBER 4 APRIL, 1965 

COHERENCE RELAXATION DURING DIFFUSION OF RESONANCE RADIATION 

M. I. D'YAKONOV and V.I. PEREL' 

A. F. Ioffe Physico-technical Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor April 17, 1964 

J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 1483-1495 (October, 1964) 

We derive equations describing the change in time of the off-diagonal (with respect of the 
magnetic quantum numbers) matrix elements of the density matrix of excited gas atoms when 
there is diffusion of the radiation. We show that when there is complete capture of the radia­
tion, there are two relaxation times for linear and for circular polarization, respectively. 
We give expressions for them. We obtain approximate expressions for these relaxation times 
and also for the decay time of the excited state when the capture is incomplete. The pressure 
dependence found here agrees with experimental data. 

1. STATEMENT OF THE PROBLEM 

A number of phenomena connected with the scat­
tering of resonance radiation makes it possible to 
determine the natural line width under conditions 
when the Doppler width is appreciably larger than 
the natural one [t- 4J. A typical effect of this kind 
is the Hanle effect which consists of the following. 
A gas in a magnetic field H is irradiated by light, 
polarized at right angles to the field. The scattered 
radiation is observed at right angles to the field 
and to the exciting beam. When the magnetic field 
is increased the degree of polarization P of the 
scattered light tends to zero according to the law 

(1) 

Here P 0 is the degree of polarization when there 
is no magnetic field, WH = 11 0gH, llo is the Bohr 
magneton, g the Lande factor, and y the natural 
width of the level. 

It turns out that when the gas pressure is in­
creased the magnetic depolarization line (and also 
the double resonance line) narrows so that the 
quantity y determined from these experiments 
turns out to be less than the natural line width [5•6]. 

The reason is the capture of the resonance radia­
tion. Let us, for instance, consider the case when 
the lower state has a total angular momentum j 0 

= 0, and the upper state j 1 = 1. Under conditions 
of complete capture each light quantum emitted by 
one atom is absorbed by another atom. The decay 
time of an excited state is thus infinite. 

We can represent an atom as a set of three 
mutually perpendicular dipoles. One can show 
easily, using the diagram of the directivity of a 
dipole, that the energy of the radiation of a dipole 

oriented, for instance, along the z axis, is distri­
buted over the components of the electrical field 
in such a way that E~ : E~ : E~ = 8 : 1 : 1. We get 
thus for the energy Iz of the oscillations of the 
z-dipole the equation 

dlz I dt = -viz + "/5ylz + 1/10vlx + 1/10yly. 

We now introduce the quantity I= Iz - % (lx + Iy 
+ lz) characterizing the preferential polarization 
of the atoms in the z-direction. It is clear that we 
have for this quantity di/dt = -3yi/10. The time 
( 3y/10)- 1 can be called the decay time of the 
plane polarization for the example considered. It 
is just this quantity which will determine the line 
width in magnetic depolarization experiments, 
double resonance experiments, and so on. The 
papers by Barrat [7] were devoted to the calcula­
tion of the quantity which we called here the decay 
time of the plane polarization and which he called 
longitudinal coherence. 

In the present paper we derive equations de­
scribing the change in time of the density matrix 
of an excited atom when the radiation is captured. 
These equations [Eq. (17)] are, in the case when 
the density matrix is diagonal, the same as the 
well-known radiation diffusion equation [B]. We 
show for the case of complete capture that the de­
cay of the off-diagonal part of the density matrix 
(the coherence by Brossel's definition [9]) and the 
equalization of the population in the Zeeman sub­
levels takes place with two characteristic relaxa­
tion times [Eq. (31)]. One of them, Y2J, is in fact 
the decay time of the plane polarization, calculated 
by Barrat, the other one, Yi.!, has the meaning of 
the decay of the magnetic moment (it can be called 
also the decay time of the circular polarization). 
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When the capture is incomplete (bounded volume 
of the medium) we can approximately introduce 
three relaxation times (Eq. (35)): two of them, 
y;- 1 and Y2 1, have the same meaning as y;-.!, and 
Y2.!,, and the third one, Yo 1, characterizes the de­
cay of the excited state (for the case of complete 
capture Yo co= 0). 

The nature of the dependence of these times on 
the dimensions of the volume or the gas pressure 
differs strongly from the dependence found by 
Barrat. This is connected with the fact that Barrat 
approximated the velocity distribution of the atoms 
by a single-velocity distribution. In the problem 
of the diffusion of radiation such an approximation 
is inadmissable since it leads to a finite mean free 
path of the photon. Indeed, it is well known [B, 10] 

that one can not introduce such a concept. 
In the present paper we shall assume that the 

distance between the atoms is appreciably larger 
than the wavelength of the light and that the Doppler 
width of the emitted line is appreciably larger than 
the natural line width and the Zeeman splitting. 
On the other hand, we shall assume the hyperfine 
splitting of the upper and the lower level to be 
larger than the Doppler width so that we may con­
sider only the transitions between two levels char­
acterized by the values of the total angular mo­
mentum which we shall denote by j 0 and j 1• In the 
following we shall put ti = c = 1. 

The Hamiltonian of the system has the form 

;;e = ::Jea + ::Jen + .1fph+ vl + v2. 
Here :tea, JCn, JCph are, respectively, the Hamil­
tonians of the interacting excited atoms, the atoms 
in their ground state, and the photons: 

::Jea = 2; (ep + W0 ) apm +apm. 
pm 

::Jen = 2; epa+ p,J.aPP.• ::Jeph= ~ qbql. +aq/..; 
pp. q).. 

Ep is the kinetic energy of an atom with momen­
tum p; Ep = p2/2M; w 0 is the excitation energy. 
The indices m number the Zeeman sublevels of 
the excited state and the indices J..l. those of the 
ground state; q is the wave vector of the photon; 
and .\ its polarization. In the chosen system of 
units the magnitude of q is the same as the en­
ergy of a photon with wave vector q; apm. apJ..t• 
and bq.\ are, respectively the annihilation opera­
tors of excited atoms, atoms in the ground state, 
and photons; V 1 is the interaction between the 
photons and the atoms: 

V 1 ~ c 11l'J.b + 
1 = v- LJ q).. ' q)..apm Clp-q. p. +c.c.; 

V pq/..mp. 

eq.\ is the polarization vector of the photon, dmJ..t 
the matrix element of the dipole moment of the 
atom, v2 is the interaction of the atoms with the 
external field which causes the transition of the 
atom from the ground state into an excited state. 
The exciting agent may be either external radia­
tion or electron impacts. We shall not use here 
an explicit form of V2• 

We do not include in the Hamiltonian the longi­
tudinal part of the interaction between the atoms, 
which is connected with the Coulomb interaction 
of the electrons and nuclei. This interaction leads 
to exchange excitations under pair of collisions [ttJ. 

The frequency of such collisions is of the order of 
n 0.\ 3y where n 0 is the concentration of atoms in 
their ground state and .\ the wavelength of the 
light. Under the conditions considered here n 0.\3 

« 1 so that we can neglect this effect. 

2. DERIVATION OF THE GENERALIZED EQUA­
TION FOR RADIATION DIFFUSION 

The density matrix p of the system satisfies 
the equation 

Wp 1 at = [ ;;e , p], 

which has the formal solution 
t t 

p ( t) = exp (- i ~ ::Je dt) Po exp ( i ~ ::Je dt) . ( 3) 
0 0 

Here Po is the initial density matrix: Po= PnPphPa• 
where Pph is the vacuum photon density matrix; 
Pa the density matrix of the excited atoms corre­
sponding to a state where there are none; Pn 
= exp ( -f33Cn )/Tr exp ( -f33Cn) is the equilibrium 
density matrix of the atoms in their ground state; 
{3- 1 the temperature of the gas. 

We introduce the single-particle density ma­
trix of the excited atoms: 

The function 

/mm (p, r, t) = (2!)3 ~ eixr fmm (p, X, t) d3x (5) 

is the classical distribution function of the excited 
atoms in the level m. Substituting (3) in (4), we 
get 

t 

/mm' (p, X, t) = Sp Po exp ( i ~ ::Je dt) a;_x/2. m' ap+x/2. m 
0 

t 

x 1exr(- i ~;;edt). 
0 

mp. ( 2nwo2 \ '/, 
Cq/.. = --) (eq/..dmp.)· 

q 
(2) We use the identity 
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t t 

exp (- i ~ :1f dt) = exp (- i:1f0t) T exp (- i ~ V (t') dt'}, 
0 0 

V (t) = exp (i:1f 0 t) V exp (- i:1fot); 

The expression for the single-particle density 
matrix can then be written in the form 

fmm' (p, X, t) = Sp PoT ca~-X/2. m' (t) ap+X/2. m (t) 

X exp ( - i ~ V ( t') dt') . 

Here Tc orders the operators along the contour 
C. The contour C goes from the point t = 0 to 
the point t (upper part) and then back to the point 
t = 0 (lower part). It is depicted in Fig. 1. 

To evaluate the quantity fmm' (p, K, t) we can 
use the diagram technique developed by Konstan­
tinov and one of the authors. [12] There is only one 
difference in that in our case there is no part of 
the contour C along the imaginary axis. To 
evaluate the quantity 

00 

fmm• (p, X, s) = ~ e-•lfmm• (p, X, t) dt (7) 
0 

we have the following rule. Dotted lines refer to 
atoms in their ground state. Irregular lines (i.e., 
lines going from "later" points on the contour to 
"earlier" ones) correspond to a factor 

+ 8:rt'l•no ( p2 ) np 
nPI'- = Sp Pn<XP!• <XP!' = (2io + 1) Pos exp - Po2 == 2io + 1 . 

(8) 

Here n 0 is the concentration, p0 = ,J 2M/{3 the 
thermal momentum, and 2j 0 + 1 the degree of de­
generacy of the lower level. Full drawn lines 
correspond to excited atoms, and wavy lines to 
photons. In the following we shall restrict our­
selves to an approximation linear in the concen­
trations of the excited atoms and the photons. The 
solid and wavy lines can therefore only be regular 
ones. To all regular lines there corresponds a 
factor unity, sine e Tr Pn aPil a.p11 = 1 ± nPil ~ 1 
when there is no degeneracy. The diagrams are 

0 -·-----·-·--- ·-t 

b 

0-·-·-·-·-·-·-t 
FIG. 1 
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+ 

FIG. 3 

then no longer dependent on whether the atoms 
are fermions or bosons. 

Points such as the ones shown in Fig. 2 corre­
spond to the interaction v1• The point 2a (emis­
sion of a photon) corresponds to a factor Cq.f*. 

The point 2b (absorption of a photon) to a factor 
c~f. Moreover, to each point on the upper part 
of the contour corresponds a factor -i and to a 
point on the lower part i. As in [12], a vertical 
section corresponds to factors ( s + inMN) - 1, 

where !JMN is the difference in energy of the 
lines going through the section to the right and to 
the left. We sum over all momenta, polarizatimis, 
and sublevels corresponding to internal lines. For 
instance, the section of the diagram given in Fig. 
4c corresponds to a factor 

1 cm•l'-* cmiJ. 
( __ i)2 _ ~ ~ q+x/2, A q+x/2, ). (9) 

V q), 1, s + i (ep-q- 8p-x;2 +I q + x/2]- ro0) · 

We can use for the function fmm' (p, K, s) the 
equation of Fig. 3: 

fmm' (p, x, s) = Fmm' (p, X, s) (s + i (ep+x;z- 8p-x/2)r1 

+ ~ /m,m1' (pb X, s) W~;;:;•' (p, pl; X, s) 
m1m1'P1 

(10) 

Here Fmm' (p, K, s) is the term describing the 
influence of the exciting external field, The doubly 

mm' hatched square Wmfu., 1 (p, p 1; K, s) is the sum of 
irreducible diagrams, i.e., diagrams which can 

~ 
1 I 

1 I 

b / \ 
I ' 
~ 

p- ?J.m' 
FIG. 4 
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p.p 
FIG. 5 

not be cut into two by a section intersecting only 
two solid lines. 

Some of the diagrams contained in W are given 
in Fig. 4. The diagram of Fig. 4c describes the 
decay of an excited state when emission is taken 
into account. We can neglect in Eq. (9) the quanti­
ties K, s, and qp/M compared to q or .w0• One 
must complete the diagram of Fig. 4c by a similar 
diagram in which the photon line occurs in the 
lower part of the contour. After calculations we 
then get 

y is the natural width of the excited state, d2 

= ~/.11 dm/.1 12• 

The diagram of Fig. 4a describes the transition 
of atoms into an excited state, taking into account 
the absorption of a photon, emitted beforehand by 
another atom (diffusion of radiation). Diagram 4b 
takes into account the possibility that the photon 
is absorbed on its way from the first to the second 
atom. Diagram 4d describes the influence of the 
gas pressure on the natural width of the excited 
level. An estimate shows that it is small com­
pared to diagram 4c if n0 A3y/ 6.wD « 1, where 
6.wD is the Doppler width of the line. Under the 
assumptions made here it turns out that diagrams 
such as 4a and 4b make the main contributions to 
w. 

To sum all such diagrams we use a method 
similar to the one used in a paper by Konstantinov 
and one of the authors.C13] We introduce the photon 
Green function DqA ( t) which satisfies the equa­
tion depicted in Fig. 5. This function is easily 
evaluated by means of a Laplace transformation: 

00 

Dq). (11) = ~ e-"1 Dq). (t) dt = 1/[11 + iq + f q). (11)/2], (12) 

we can replace all photon lines by "fat" ones and 
each "fat" line corresponds to a factor~ DqA ( 77) 
on the upper part of the contour and to DqA ( 77 ) on 
the lower part. The index A of the functions D 
will be dropped in the following since they do, in 
fact, not depend on the polarization of the photon. 
When we write down the factors corresponding to 
a section, we must take the "fat" photon line 
directed to the right and assign to it an "energy" 
iT). We must integrate over all 77 as follows:· 

Note that the functions Dq ( 77 ) and Dq ( 77) are 
analytical in the right half-plane. 

The sum of all diagrams such as 4a and 4b 
takes the form given in Fig. 6. There are always 
four diagrams of the kind 6a (with different direc­
tions of the dotted lines), and two of the kind 6b. 
When evaluating the corresponding terms in W we 
shall neglect the quantities s and K • Vp as com­
pared to the Doppler line width q · Vp ( vp = p/M ). 
This means that the characteristic time for a 
change in the density matrix f is large compared 
with the inverse Doppler line width and that the 
characteristic distance over which f changes is 
large compared with the wave length of the radia­
tion. We then can obtain 

. - r 1 ~ ir d11 i::o d11' 
W2- (,) V2 Li np-q2no (qvp- qvp,) .\ ~ ~ ~ 

0 q -ioo m -ioo m 

(14) 

Gm,m,' ( ) - 'V (Cm,p.' )* cmp.cm<p.' (Cm'y-)• __ 1_ Wo • 
mm' q - ;:;, ql. ql. ql. ql. 2/o + 1 Y 

).).' 

r ( ) = 3_ ~ nr> I C:;'{ 12 

q). 11 V pmp. 11 + i ( 8p+q- 8p + W0 ) 2/o + 1 · 

We also introduce the function 
co 

Dq). (11) = ~ e-r,tD~).(t) dt 

(13) We can calculate the integrals over 77 and 77' by 
closing the contour of integration in the right half­
plane and using the fact that the functions Dq ( 77) 
are analytical in that half-plane. After this, the 

u 

and the function r qA ( 77) corresponding to it. 
ing the fact that 

f io;+a 
Dql, (t) = 2ni ~ e111Dq). (11) d11, Dq).• (t) 

-ico+o 

f ioo_+cr _ 
= 2--:- \ e"1Dq). (11) d11, 

m .\ 
-ico+l1 

Us-

expression for w2 becomes 

~ 
I I 
I ~ 

a \ ' 
I I 

~ 

~-
' ' 

b '"-- .... , ' ' ........ , 
' ' -------'~ ' 

FIG. 6 
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W r 1 \ d3q 1 2 " (k k ) cm,m( ( ) 
2 = Wo V ~ (2n):f np-q q nu Vp- Vp, mm' q 

X [s- iwo- i qvp + i I q + xf21 

+ r q (s- iwo- i qvp)/21-1 [s + iulo+ iqvp- i 1 q- x/21 

+ fq (s + iwo + iqvp)/2r1 • 

The sum over q is here replaced by an integral 
and k denotes a unit vector in the direction of q. 

The integrand is a sharp function of the vari­
able q with a maximum near the point q = w0• We 
can thus replace q by wok in the slowly varying 
factors, and also in the quantities rq, K • q, and 
q·vp. Moreover, since w0 « p0, we can replace 
the function np-q by np. The integral over the 
modulus of q can then easily be evaluated and we 
obtain for w2 the expression (as s - 0) 

Here 

_ (' d3p' np· ~ mp. 2 - .l (2n)3 2 . + 1 2no (qvp- qvp·) .LJ 1 Cq). 1 . 
/o "'I" 

Using Eqs. 18) and (11) and putting q = w0k, we 
get 

GT , no [ (kvp) 2 ] 2h + 1 /i/(kvp)=rriz--exp ---.,-- -.--y, (16) 
Wo3Vo Vo" 2;o + 1 

where v 0 = p0/M is the most probable speed of the 
atom, j 1 and j 0 are the total angular momenta of 

IDtillt' the upper and lower levels. Thus, W mm' con-

sists of two terms defined by Eqs. (11) ("depar­
ture" term) and (15) ("arrival" term). 

Multiplying Eq. (10) by S + i ( Ep +K/2- Ep-K/2) 
= s + iK · Vp and changing to a coordinate-time 
representation, we get 

iJfmm•(r,p,t) ) J ( ) -----0[-----+vpV'fm,w(t', p, t =-y 7111w r, p, t 

-l--Y~ d3p'~ d3r' J1 K:~~~· (r-r:, p, p')fmm;•(r', p', t) 
n1tl'tlt' 

(17) 

Here 

r 0 eiz•'o (kv - kv ) 
X \ d"x · P p, 

J ixk + F(kvp) ' 
(18) 

Fmm' ( r, p, t) describes the excitation of the 
atoms by the external field. For the case when the 
excitation is caused by light having a wide spec-

tral composition the quantity Fmm' ( r, p, t) has 
been calculated before. [4] We changed in Eq. (17) 
for a summation over momenta to an integration, 
using the substitution 

~ L-~ (~~J· 
p 

We can evaluate the integrals in Eq. (18) using the 
identity 

(' dQ-.~~~~)__~ = \ d3~ e-pT(kvPlci<P<D (k). 
.\ zxk + /iJ (kvll) .l P" 

We have introduced here the vector p = pk. The 
integration over K gives then a o-function and we 
get 

mimi' n 1 mimi' 

Kmm• (r, p, p')=(2:)3 2n!-;:-pGmm• (won) 

X 6 (nvp- nvp•) exp ( -cif(nvp) I r I). (19) 

Here n is a unit vector in the direction of r. 
Equation (17) with the kernel (19) is a kinetic 

equation for the off-diagonal density matrix of the 
excited atoms. It changes into the usual equation 
for the diffusion of radiation [B], if we bear in mind 
that from' = omm'f and take the trace with respect 
to the magnetic quantum numbers of the equation. 
The term VpY'fmm' can be dropped if the atom 
traverses during the time of the emission, a dis­
tance small compared to the characteristic length 
over which from' changes. 

3. SOLUTION OF THE KINETIC EQUATION FOR 
AN UNBOUNDED MEDIUM 

If the medium is unbounded and the excitation 
uniform, from' will be independent of the coordi­
nate. We can then in Eq. (17) in the second term 
on the right integrate over r'. It follows from Eq. 
( 19) that 

(20) 

We shall assume that Fmm' ( r, p, t) 
= np (2rr)- 3Fmm' (t), i.e., that the excited atoms 
are created with a Maxwellian momentum distri­
bution. This is valid for excitations by electron 
collisions or for excitations by light of which the 
spectral width is larger than the Doppler line 
width of the excited gas. One can verify then that 
the function from' can be looked for in the form 

(21) 
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i.e., in the given case, the distribution of the ex­
cited atoms over the momenta remains for all 
times a Maxwellian one. 

Indeed, we substitute (21) in (17) and integrate 
over the momenta p' using (20) and (16). It then 
turns out that each term in the equation contains 
a factor ( 21T )- 3 np. Dividing by that factor, we get 

~fmm' (t) _ _ "V m,m,, ' 
dt - Yfmw+Y ~ gmm' fm,m,,+Fmw(t), (22) 

tn 1m.,, 

(23) 

After summing in Eq. (14) over the polarizations 
and integrating over the angles, the matrix g be­
comes 

·m,m,'-~ i "V{{d* d ){d d*) 
gmm' - 10 d"(2" + 1) L..:. m,w m,'fl m[l m'!' 

]1 !lfl' 

+ G { d~,,wdm!l) { dm,'!' ,,d~,~,) + { d~·'"'d~uJt) ( dmfldm,'!l')}. 
(24) 

For the case j 1 = 1, j 0 = 0, for instance, 

1 
am,m,' = -~(b {) + Gb b 
5 mm' 10 n1 1m{ nnn' m 1m m!'m' 

+ {) ,b , { -1)m+m'). 
m 1, -1n -m, -tn 1 

Account of the diffusion of the radiation leads 
to the conclusion that the equations for different 
elements of the density matrix fmm' turn out to 
be coupled to one another. To solve the set (22) in 
the general case, it is convenient to expand the 
density matrix in terms of irreducible tensor 
operators [14]: 

2jt X 

'"V"V' ' f = ~ ..;...! La"fa"(-1)a; Spj =foG. (25) 
X=O a.=-X 

The T~ operators are normalized such that 

(T ") '- _2x_±_!__(-1)i•-m'( h X jl ) 
a mm - {Z. + 1) 'I . 1 • .71 ' ,-ma m 

We have used here Wigner's 3j-symbol. Then 

Using the orthogonality relation (27) one can 
easily express f:1 in terms of fmm': 

X (-1)a(2h + 1) "'Y· X 
fa ==-· ' ' (T-a )mm,fmm'. 

?·J -1- 1 ...... 
mm' 

(26) 

(27) 

(28) 

From the hermiticity of the matrix fmm' it fol­
lows that 

We can now find solutions of the set of Eqs. (22) 
for the quantities f~: 

dfa" I dt = -Yxoofa" + Fa"(t), (29) 

2h+1 ~ 
F a"(t) = {- 1)a Zx _j_f 2..;. {La") mm'Fmm' (t); 

1 mm' 

Yxoo I\'= 1 -Ax; ( 30) 

3 {11x}2 Ax= 10{2j1+1)[6+{-1)"] ... , x =I= 0, Ao = 1, 
]1 ]1 ]0 

so that y0 00 = 0. The expression within the braces 
is a 6j-symbol. When deriving Eqs. (27) and (28) 
we used the representation of the matrix elements 
of the dipole moment in terms of 3j-symbols and 
Eqs. (2.20), (2.21), and (4.17) from [14J. 

Equations (25) and (29) give us the complete 
solution of the given problem. If we put F~ = 0, 
these equations describe the decay of the off­
diagonal elements and the equalization of the pop­
ulations on the sublevels of the excited state. It 
follows from Eqs. (30) and the properties of the 
6j-symbols that YKoo differs from y only when 
K = 1 and K = 2 so that there are two relaxation 
times differing from the natural lifetime. 

Using the formulae for the evaluation of the 
6j-symbols [14] we can find explicit expressions 
for y 1oo and Y2oo: 

Y1oo 1' Y2 
-- = 1- A1 = 1--- · 

y 16jl(j1+1)' 

Y2oo = 1 _ A = 1 __ 7_ {3Y(Y -1)- 8j1{j1 + 1)}2 
y 2 100 (2h-1)2j1(2j1+2)(2j1+3)' 

(31) 
where Y = (j 1 - j 0 ) ( j 1 + j 0 + 1 ) + 2. 

We note that the intensity of the emission of 
light which is linearly polarized, for instance, 
along the z axis, is proportional to the expression 

L frnm'dm[l 2 (d:'n·!l)z, 
1nm'Jl. 

which can easily be shown to contain only f~ for 
K = 0 and K = 2. In experiments in which the de­
gree of linear polarization of the emitted light is 
measured the quantity y 200 will thus appear. 

If we bear in mind that when the excitation is by 
light [4] 

Fmm' ~ L {dm!'E) (d:'n•,,E*) (32) 
!l 

(where E is the complex amplitude of the elec­
trical field in the exciting light) we can use Eq. (30) 
to reach the conclusion that when the excitation is 
by plane polarized or unpolarized light only the 
f~ with K = 2 or K = 0 are excited, i.e., there is 
one relaxation time y 2:X, . Barrat [7] evaluated the 
quantity Y22o· The values obtained from Eq. (31) 
agree with his results. 
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The second relaxation time Yt;, appears under 
radiation of circularly polarized light. This con­
clusion follows from Eqs. (32) and (30) and also 
from the fact that, apart from a factor, f~ (a = 0, 
± 1) is the same as the average value of the vec­
tor of the magnetic moment of the excited state. 
One can say that Yt~ is the time for the decay of 
the magnetic moment of the excited state. 

If a magnetic field H is applied to the system, 
we must add to the Hamiltonian a term 

Va = ~-togHJ, 

where 11-o g is the gyro magnetic ratio, 11- 0 the Bohr 
magneton, and J the operator of the angular mo­
mentum. We must then add to the right-hand 
sides of Eqs. ( 17) and (22) the term 

-i [Va, f]mm' = -i~-togH ~ (lmm"fm"m'- fmmnlm"m<). 

This obvious result can, of course, also be ob­
tained by the diagram technique developed in Sec. 
2. The other terms in Eqs. (17) and (22) remain 
unchanged, if we assume that the magnetic split­
ting is small compared with the Doppler line width 
and that the magnetic field varies little over a 
period equal to the reciprocal of the Doppler width. 

To the right-hand side of Eq. (29) we must add 
a term 

2' +1 
-i.(-1)a ;~+ 1 ~ (T-a")mw[Vs,flmm' 

mm' 

i~-tog " -=-==- {l'(x+ a) (x- a+ 1)Hda-t + ai2Hofa" ·v2 
(33) 

It is clear that the equations for the f~ with differ­
ent K remain independent also when there is a 
magnetic field. The discussion given above about 
the occurrence of the relaxation times l't~ and 
Y2.!, remains thus valid. In double resonance ex­
periments [2], experiments on the magnetic de­
polarization of light [1], paramagnetic resonance 
experiments [4J; and so on, the relaxation time y 2~ 
will occur. In experiments in which one can ob­
serve the relaxation of the magnetic moment of 
the excited state, the time Yt~ will occur. We note 
that Eq. (29) with expression (33) added to its right­
hand side is, in fact, for K = 1 the Bloch equation 
for the magnetic moment in cyclic components. 

4. RADIATION DIFFUSION IN A FINITE MEDIUM 

When the volume is finite, Eq. (17) is very 
complex. The equations for the f~ with different 
K will, generally speaking, not separate and it is 

thus impossible to state that in experiments on the 
magnetic depolarization of light (Hanle effect) the 
line retains a Doppler shape. A detailed descrip­
tion of the effect depends on the shape of the vol­
ume and the distribution of the excitation intensity 
over the volume. We note that the already men­
tioned specific diffusion of radiation does not make 
it possible to change from an integral equation to 
the differential equation of diffusion. 

To obtain a qualitative description of the influ­
ence of the finite dimensions of the vessel, we can 
proceed as follows. We shall assume that the mo­
mentum distribution of the excited atoms is Max­
wellian. We integrate Eq. (17) over the momenta 
and average it over the coordinates. We replace, 
moreover, in the integral term in Eq. (17) the 
function fmm' by its average value and the quan-

tity v-t jd3 r jd3 r'K(r- r') by J d3pK(p). Af­

ter changing to the variables f/i_ we then get in­
stead of Eq. (29) 

dfa" -a:t= -vxfa"+Fa"; (34) 

Vxh = 1-A,.x, (35) 

A0 = 1, and A1 and A2 are determined by Eqs. 
(31); 

1 oo L . 
x = 1---= ~ e-t' exp {- -e-t'} dt, 

l':rt lo -oo 

2jo + 1 8:rt'''vo 
lo=-------

2i1 + 1 n0'),3y 
(36) 

is a quantity which has the meaning of the mean 
free path of a photon in the center of the line, L a 
characteristic dimension of the vessel. The inte­
gral occurring in Eq. (36) is tabulated in CtJ. When 
L/Z0 » 1 

1- x ~ ~( :rtln__£)-''•. 
L . lo 

When K = 0,2 Eq. (35) is similar to the result 
obtained by Barrat. The method applied by us to 
estimate the relaxation time for a finite volume is 
essentially equivalent to Barrat's method. Our re­
sult differs, however, essentially from his result 
in that Barrat assumed that all atoms had the 
same speed. In the single-speed approximation, 
the mean free path of the photon is important, 
while it is impossible to introduce such a quantity 
for a Maxwell distribution, [s, to] and the attenua­
tion of the beam of light is not exponential. In 
accordance with this we obtain instead of Barrat's 
result Yo ~ y exp [ --J ( 1r /6) L/l0 ] for the recipro­
cal of the de-excitation time the estimate 
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lo ( L )-';, 
Yo ~ 'Y L :n; In z;;- . 

Apart from a factor of order unity, this estimate 
agrees with the result of the more detailed calcu­
lation by Holstein. [8] 

The quantities y 1 and y2 approach their limit­
ing values considerably more slowly than expo­
nentially when the pressure is increased. This 
agrees with the experimental data on y 2 [6] and on 
the degree of polarization. [15] As far as we know, 
the quantity y 1 has not been measured. We can 
obtain a more exact estimate of the relaxation 
time for a finite volume by using the variational 
method developed by Holstein to determine y 0• 

For instance, when j0 = 1, j 1 = 0 we can obtain by 
such a method for a plane lamina of thickness 
2L ( L » Z0 ) 

'\'2 = ( 1 - :o Xz) y, Xz = 1 - ~~ ~ ( :n: In ~ ) -'/, . 
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