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A general method is developed for investigating the probabilities of molecular transformations 
induced by neutron impact. The method is based on an application of the impulse approxima­
tion to secondary collisions of the atoms ejected by the neutrons with the other atoms of the 
molecule. The method is used to calculate the probability of dissociation of triatomic mole­
cules by neutrons accompanied by excitation of the diatomic residue. 

1. INTRODUCTION 

THE collision between a sufficiently fast neutron 
and a nucleus in a molecule is accompanied by di­
verse transformations of this molecule. In this 
article we develop a theory for such processes, 
based on the following assumptions: 

1. The transformations of the molecule are 
such that the molecule remains in the electronic 
ground state. In other words, the atom knocked 
out by the neutron and also the molecular residue, 
are not electron-excited. This assumption is valid 
at neutron energies of the order of the energies of 
the chemical bonds, if the electronic ground state 
term does not cross or does not come close to the 
term of its excited state. 

2. The chemical transformation in a polyatomic 
molecule M, one of whose atoms acquires from the 
neutron some momentum K, has the following 
character: the atom At knocked by the neutron 
collides with another atom A2 of the molecule, 
thereby causing a transformation of the molecular 
residue M - At (excitation or dissociation), and 
goes off to infinity. In this scheme of the process 
it is assumed, obviously, that the atoms At, which 
received the momentum from the neutron, are 
"peripheral" and have a valence bond only with 
one of the atoms of the residue M - At (the ter­
minal atoms in linear molecules, the H atoms in 
the H20 molecule, etc., are of this type). We also 
exclude from consideration such processes as the 
pick-up of an atom At by an atom A2 or the sub­
stitution of A2 for At in the residue M - A2, 

which are possible in principle. 
3. The interactions between the atom At and 

the other atoms of the molecule have a paired 
character, and the collisions between the atoms 
At and A2 are impulsive, i.e., they are charac-

terized by the inequality At_ 2 .6-E/hv « 1, where 
At_2-radius of interaction of the atoms At and 
A2, .6-E-difference of the vibrational levels in the 
residue molecule, and v-relative velocity of the 
atoms At and A2• Both conditions are satisfied 
starting with EAt ~ 10 eV, which thus defines the 
region of applicability of our theory. 

In this connection it must be noted that an at­
tempt was made in [tJ to calculate the probabilities 
of the processes that we are investigating in terms 
of "reduced widths" ®(p ), borrowed from nu­
clear spectroscopy, the statement being made that 
the region of applicability of the theory in [t] be­
gins with an energy EAt on the order of several 
times ten electron volts. Actually (see the end of 
Sec. 2), as follows from our general formula (14), 
the disintegration of the molecule, accompanied by 
some transformation of the residue M - At, has 
a cross section that can be expressed in terms of 
®(p) by the formula a= J I ®(P) l2 dp (p-radius 

of the reaction channel) only in the limiting case 
of very high energies EAt » D2/ .6-E [ D-energy of 
the dissociation M-. At+ (M-At)], i.e., only 
in the limiting Born region of incident-particle 
energies of the order of 1000 eV, where the proba­
bilities of excitation of the molecular residues are 
independent of the energy. The most interesting 
energy region EA1 ~ D2/ .6-E, 1 in which these 
probabilities have maxima as functions of EA1 (in 
accordance with our calculations), is thus not in­
cluded in the above-mentioned theory. 

2. GENERAL METHOD 

Assume that a fast neutron collides with one of 
the atoms (designated by the number 1) of a three­
atom molecule, and transfers to the molecule 
enough energy to break the bonds, so that the 
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molecule goes over as a result of the collision into 
a continuous-spectrum state 1J!k.1b ( r 1, r 2, r 3 ) ( r 1, 

r 2, r 3-coordinates of the nuclei of the atoms of the 
molecule), such that 

'~k,b (ri> r2, ra)--+ <Dk,(rt) (j)b (r2, ra) (r1--+ oo ), 

where <Pb ( r 2, r 3 )-wave function of the excited 
molecular residue, and <I>k 1 ( r 1 )-function that con­
sists as r 1 - oo of a plane and converging spheri­
cal wave. The function 1/Jktb corresponds, obvi­
ously, to the knock-out of a recoil atom with final 
momentum k 1• The type of the excitation of the 
molecular residue is not specified here [ <Pb ( r 2, 

r 3 ) can correspond also to disintegration of this 
residue]. 

We denote the wave function of the initial mole­
cule by 1/Jo ( r 1, r 2, r 3 ). The cross section of the 
process in the Fermi pseudopotential approxima­
tion is (see, for example [2]; we use a system of 
units in which h = 1 ) 

dcr1 = a12 Zo J (~k,b (r1, 1'2, ra) eixr,~o (ri, r2, ra)) [2 dktdOn, 

(1) 
where a 1-amplitude for the scattering of neutrons 
by atom 1 which is rigidly fixed in an infinite 
mass; k 0 and k = k 0 - K-neutron momentum be­
fore and after the scattering; On-solid angle of 
the scattered neutrons. 

The function 1f!k1b ( r 1, r 2, r 3 ) with the above­
mentioned asymptotic property describes (accu­
rate to within the sign of k 1 and the complex con­
jugation operation) the scattering of particle 1 by 
the system of atoms 2 and 3, which makes up the 
residue molecule. As shown earlier [3], in the case 
of sufficiently high incident-atom energies, for 
which the condition Ab.E/v « 1 is satisfied, it is 
possible to use the impulse approximation to de­
scribe the collision of A1 with the residue M - A1• 

As applied to our problem, this means that we can 
write down the wave function of the final state of 
the molecule in the impulse approximation [4]: 

~k,b (ri, r2, ra) = ~~ (j)b (p2, p3) [ exp ( i k:2: !:r2 ) 

( krr1 +Para ) X .~q, (r1- r 2) eip,r, + exp i m1 + ma 

X ~q, (rl - r 3) eip,r,] dp2dp3, 

q2 = (m2k1- m1p2) I (m1 + m2), 

qa = (mak1- m1pa) I (m1 + m2). (2) 

From now on replacement of r 2 or r 3 with the 
momentum p 2 or p 3 in the functions <Pb and ljJ 0 

denotes that the Fourier transform in the correspond­
ing variable was taken. The function 1/Jq ( p) de-

scribes the paired scattering of the recoil atom 
and one of the atoms of the molecular residue in 
their center-of-mass system. 

Let us consider for concreteness the case when 
the final state is produced as a result of interac­
tion between atoms 1 and 2. The corresponding 
matrix element takes after simple transformations 
the form 

~~~~~cpb* (P2• ra) exp {- i (P2- X1- P2') r2} ~q (p) eix'p 

X ~o (p, P2', ra) dp2 dp2' dpdr2dr3 , 

(3) 

Under quasiclassical conditions, which are valid 
for the collision of arbitrary sufficiently fast 
atoms, the function 1/Jq (p ), which describes the 
paired scattering, can be represented by some sum 
over the classical trajectory [5]: 

(4) 
A 

where A is a parameter that classifies the trajec­
tory. The sum in (4) extends over all trajectories 
that arrive from infinity (in the direction of q) at 
the point p: 

p 

s~. = ~ g~.' az, g~.' = [2ft (E- v (p'))J'f,, 

V (p )-potential energy of the atoms 1 and 2; 
E = q2/2t.t; t.t = m 1m 2/ ( m 1 + m 2 ) • The integration is 
carried out along a trajectory determined from the 
classical Hamilton-Jacobi equation 

(\78)2 = 2rl(E- V), 

A~.= [qlg~.'(p)]'h[dfoldf;.]'h, 

where df0 and dfA -cross sections of the bundle of 
trajectories at q · p' - oo and in the vicinity of the 
point p, respectively. 

The main contribution of the integral 

f~~o(p,p2'• ra)ei><'Pe-iS!.dp (5) 

is determined by values of p close to p 0, corre­
sponding to spatial localization of particles 1 and 
2 in the initial state of the molecule (the orienta­
tion of which is assumed, as usual, to be fixed if 
the energy transfer from the neutron to the mole­
cule is large). The integration over p therefore 
selects, from among all the trajectories, only 
those close to p 0• The values of p 0 correspond to 
the minimum of the potential energy V ( p ) . For 
trajectories close to Po the phase integrals SA 
can be written in the form 

s~. = (p- Po)g~. + B~.(po), g~. = g~.'(po), (6) 

Jg~.J2 = q2 + 2~tD, 
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where D-value of the minimum of the potential 
curve V ( p) relative to V ( "") and BA, ( p 0 )-large 
real quantity that depends strongly on A.. 

Taking (6) into account, we now substitute (4) in 
the expression (3) for the matrix element and in­
tegrate in that formula with respect to the variable 
p, obtaining 

X exp {- i (P2- Xr - P2') r2} (7) 

X '¢o (Pr ==g.,..- x', p2', ra) dp2 dp2' dr2 dra. 

The summation over A. is equivalent to integration 
over the directions of the vector gA.. It is easy to 
verify that when I gA. 12 and K' 2 » p12, this corre­
sponds in turn to integration with respect to p1 
under the condition 

g'l.z = lx' + Pdz ~ x'z + 2x'pt. 

If we now substitute here the expressions for gA-2 

and K' from (3) and (6) and divide the result by 
21J., we find that integration with respect to p1 in 
(7) occurs at a fixed value 

x2 I 2mt + XP1 I m1 = kt2 I 2m! + 'Xt2 I 2m2 + XtPz' I mz + D, 

(8) 
which corresponds precisely to the impulse condi­
tions for the transfer of energy from the neutron 
to the atom 1 ( E = K 2/2m2 + IC • p 1/m 1 ) and from 
atom 1 to atom 2 (Eb = K 1o/2m2 + K 1 "p'2/m2 ); we 
recall that the energy conservation law takes the 
form 

(9) 

If the excitation of the residue molecule is such 
that I E b - K 12 /2m2 I « E (this corresponds to the 
impulse approximation in its simplified treatment 
of the collision between the recoil atom and the 
molecular residue, when the law of paired interac­
tion of atoms 1 and 2 can be regarded as independ­
ent of the initial momentum of the scattering atom 
2 [3] ), the condition (8) with 

(9a) 

corresponds simply to the law of energy conserva­
tion. T~ing this circumstance (the fact that p 1 is 
independent of p'2 ) into account, we can write down 
the result of integration (7) with respect to p2 and 
p' 2 in the form 

2] A;~. (po) exp [- iB;~. (po)l ~~ cpb• (r2, r 3) eix,r, 
>. 

In calculating the probability (the square of the 

modulus of the matrix element) it is necessary to 
retain in the sum :EA.A.' only the terms that are 
diagonal in A. and A.', inasmuch as all the other 
terms oscillate rapidly when A. is varied, i.e., we 
have for the scattering cross section 

dar = ar2 : 2] I (cpb (r2, r 3) eix,r, 
o >. 

X'¢o(Pt = g>,- x', rz, ra)) 12 dkr don. 

As already mentioned, averaging over the trajec­
tories that lie near Po corresponds to integration 
with respect to do n• or to integration with respect 
to the variable p1 under the condition (9a). Taking 
all this into account, we arrive at the following ex­
pression for the cross section for knocking out 
atom 1 and producing a specified excitation of the 
molecular residue (for arbitrary molecules, r 3 

should be taken to mean the coordinates that make 
up together with r 2 the entire set of coordinates of 
the molecular residue ) : 

d2ar 2 k \ ( ) · ( ) > 12 dedon = ar ko ~I (cpb r2, ra e'"••• '¢o P1, r2, rs 

( x2 xp ) 
X W (x, k1, p0 ) ~ ,8 - - 2---__ r dp1 dok, dox, 

mr mr 
(10) 

k, _ m2k1-m1xr 
r - ml + m2 ' 

(11) 

Here df0/dfA, -dimensionless quantity which coin­
cides as p- ao with da/p 2dfl, where da/dQ is the 
classical differential cross section of the paired 
scattering of the atoms. 

From the differential neutron scattering cross 
section (10) we can go over to the total cross sec­
tion a 1f of an inelastic process of a definite type 
which is of greatest interest. In finding this cross 
section we can always neglect the momentum 
spread of the atom A1, as a result of which a1f 
takes the form 

art= ar2·4:n: ( ml )2\ Wt(8) Ed8 ' 
m1 + m ) max 

Wf = ~ W (x, kl> p0 ) P (xr) dox dok,. (12) 

where 

P (xr) = ~I ~cpb• (r2, ra) eix,r, '¢0 (r11r2, ra) dr2 drsl2 drr, 

x 2 mrm ko2 

8 = -2--, Xr =x-kr, Emax = 4 )2 2 mr (mr + m m 

( m-neutron mass). The quantity Wf, which has 
the meaning of the probability that the transfer of 
energy from the neutron to the atom A1 will re­
sult in some transformation of the residue, is 
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naturally the probability W of the transfer of mo­
mentum K t from atom A1 to A2 multiplied by the 
probability P of some transition in the residue, 
both probabilities being averaged over the direc­
tions of kt and IC. 

The energy conservation law takes after these 
simplifications the form 

xz ktz Xtz 
e=--=D+-+ +eb', (13) 

2mt 2mt 2(mz + ma) 

where E'b-value of the internal energy transfer 
to the molecular residue. The final momentum kt 
of the atom At is determined uniquely from its 
initial value K by using the law of paired interac­
tion of the atoms At and A2, after which the inte­
gration limits in (4) are determined from the roots 
of (13). 

The quantity P = J I M 12 drt can be simplified 
by introducing the internal (Jacobian) coordinates 
of the molecule. As applied to a triatomic mole­
cule these coordinates Pt and p' are expressed 
in terms of rt, r 2, and ra as follows: 

Pt = rz- ra, p' = rt-R, 

R = (mzrz + mara) / (mz + ma). 

The result of the transformation can be written in 
the form 

.P = ~JMJ2 dp', 

M = ~ «pb' (pi) exp (-i ma ~1m2 ~<tPI) 'ljlo (Pt• p') dp1 • (14) 

If the coordinates Pt and p' coincide approxi­
mately with the normal coordinates (this is the 
situation, for example, if rna » IDt or m 2-the 
case of H20), then lf!o= cp 0 (Pt)cp' 0 (p'), andcon­
sequently 

p =I~ «pb* (Pt) exp (- i ma ~3m2 XIPI) «ro (pi)dpl r. (15) 

Let us consider in greater detail the case of 
large energies E: » D. Under this condition we 
can separate two essentially different processes: 

1. The neutron transfers to the atom At a mo­
mentum K in a direction such that At does not 
come in close contact with the other atoms of the 
molecule. The role of "collision" is played in this 
case simply by the motion of At in the field of the 
atom with which it has a valence bond (we shall 
denote it by A2 ). 

At the high energies in question, we can assume 
the trajectory of At to be a straight line, i.e., kt 
coincides with K in direction. The momentum K 1 

« K, transferred to A2 in a direction parallel to 
kt, can be approximately determined by neglecting 
in (13) the term Kt2/2 (m2 +rna). i.e., 

(15a) 

The component K tl perpendicular to kt is given 
by the general formula for the transfer of momen­
tum at high energies of the colliding particles 
(see CsJ, p. 74): 

_~_ _ m1i5 ""~ dV(p) dl 
Xt - -- ------

X dp p ' 
, Po 

(16) 

where V ( p )-potential of interaction of particles 
1 and 2, 6-an impact parameter uniquely con­
nected with the direction of K, and Z-coordinate 
reckoned along the trajectory of particle At. 

For approximately linear trajectories we can 
assume also in the definition of W( 11) that 

( mt + m2)2 df = ,. ( _ ) 
df u o, OJ<, 

m1 A 

and average in (12) only over the directions of IC 

and kt; this is equivalent to averaging over the 
orientations of the molecule (symbol ( )n) at 
specified directions of the neutron before and af­
ter scattering, i.e., 

(17) 

where P (K) is defined in (14) and (15), and the 
components of K t are given in (16) and (15a). The 
limits of integration with respect to E: in (12) can 
be taken to be 

m1 + mz + ma (D + ') d E 
llb an max· 

mz+ma 

The effective region of variational coordinate in 
(16) is of the order of magnitude of the molecular 
vibrations 1/v 112aw. Therefore at very high neu­
tron energies, such that 

we can assume in (14) that the exponential is equal 
to unity and M coincides with the reduced width 

8 (p') = ~ «pb* (Pt) 'ljlo (PI• p') dp1· 

In other words, the quantity Wf does not depend 
on this case on the energy and can be written in 
the form 

(18) 

where Q-effective region of the angles in which 
the foregoing treatment is applicable. 

Formula (18) coincides, apart from a factor 
Q/47r, with the analogous result of Matthies and 
Neudachin [tJ which, consequently, can be regarded 
as correct to a certain degree only in the limiting 
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case of very high energies (of the order of keV), 
satisfying the condition 

ma Xo2 • m 3 m 1 D2 
--~~~<<1, 1.e., e~---
~+~x~~ ~+~~w 

To the contrary, formulas (12) and (17) are valid 
also in the intermediate region E ~ D2/w, where 
the probabilities Wf (E) have maxima. 

2. A different type of process takes place if the 
neutron transfers to the atom At a momentum in 
a direction such that the atom comes in close con­
tact with the atom A2• In this case, as can be 
readily seen, the quantity W is expressed simply 
in terms of the cross section u ( K ', k' 1 ) of the 
paired elastic scattering of atoms At and A2, i.e., 

W= (m1 +m2 y a(x',kt'). (19) 
m, ' 4:rtpo2 

The probability Wf (E) is given by the formula 

The probabilities determined in this manner can 
usually be regarded as small compared with those 
given by (17), in a ratio on the order of u/4rrpr 
Therefore formula (17) yields in many cases what 
is essentially the total probability of the process. 
An exception in this respect is the case when the 
coordinates p and p' are close to normal, and the 
value of P at sufficiently high energies is equal to 
zero for collisions in which the momentum of the 
atom A1 changes little. In this case nearly-frontal 
collisions connected with large transfer of momen­
tum from At to A2, can become significant. Such 
a situation obtains, as already noted, when the 
neutrons knock out H atoms from H20 molecules. 
We note also that if P is of the form (15), the 
probability (20) coincides simply with the proba­
bility of transformation of the residue as a result 
of collisions between the atom At, which is inci­
dent from infinity, with A2• 

This illustrative picture, as can be seen from 
the foregoing, is valid only under the special as­
sumption that p 1 and p' coincide with the normal 
coordinates. It does hold, however, for water 
molecules. Therefore the cross section for the 
process whereby the neutron knocks out a hydro­
gen atom from the water molecule, accompanied 
by vibrational excitation of OH, can be directly 
determined from the general formulas [7] for the 
probabilities of vibrational excitation of diatomic 
molecules by sufficiently fast atoms, assuming 
that the excitation of the OH is produced by a hy­
drogen atom incident from infinity. 

3. COLLISIONS WITH LINEAR TRIATOMIC 
MOLECULE 

We shall investigate the more complicated laws 
that apply when the 'reduced widths' 

8 = ~ qJb (Pt) '¢o (pl, p') dp1 

differ from zero, using as an example the collision 
between a neutron and the atom At of a linear 
triatomic molecule, accompanied by vibrational 
excitation of its diatomic residue A2A3• The prob­
ability Wn (E) of such a vibrational excitation of 
A2A3 is given by formula (17), which now must be 
written in the form 

P \ I\ * ( ) -iX' Pt •h ( ') d 12 d ' = .\ \.\ (jlb P1 e -ro P1, P P1 P , 

(21) 

where, in accord with (15) and (16), ,J is the angle 
between the direction of emission of A1 and the 
molecule axis. 

Using the oscillator wave functions for the 
initial state of the molecule A1A2A3 

( w, )''• ( w,u,2 \ ( Wz \''• ( WzUz2 ) '\jJo = --;t exp ~ - 2-) ~-) exp ~ - 2 ~-

( u 1u2-generalized coordinates), of the final state 
of A2A3 

( 'Y \''• 
(jlb = (2nn!) -•;, ~. 1 

:rt· 

'Y = flzaWb 

and known tabulated integrals LsJ, we reduce (21) to 
the form 

Wn(e)=A W~1)n \ exp{-p~2 -(qt-~)2} 
?nn! J 

-00 

X Hn( ·~ t )dt 
2l'~2 - 1 

(22) 

where 

A= (2 I :rt) '1•l' v /v'la,~z ~ az~1! I c, 

v' = v -1- 2a ~ c2 I 2b, 

b = 1lz(~,2 + ~z2), 
c=la,~,+az~z!, ~=12v/v', p=1/(v+2a), 

q = [b (v + 2a) j c2J''', r = [2y'b/ (v + 2a) c2J''', 
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c 1, 2(t,2 ) are the components of the amplitude vec­
tors of the molecule A1A2A3• 

In the limiting case when 'K = 0 (when the gen­
eralized formula (18) is valid) we get from (22) 

Wn =A [ ~2 -=-!__]''• s r (n + 1/2) 

1- s2/2 l3 n! 

( 1 1 1 1 ' X ( j32 - '1) n ( s2 - 1) n F 2 ' 2' - n + -2 ' 2 - s2 ) ' 

1 j32 
s2=----

2q2 ~2-1' 

witht) 1 < s 2 and {3 2 < 2. 

(23) 

According to (23) wn decreases monotonically 
with increasing n. As n- oo we obtain from (23) 

(24) 

In the general case when 'K ~ 0 the energy depend­
ence of wn ( E) takes the form 

Wn(e) =A (~2-1)n in ~~"k! (n)2 (1- s2)n-h. 
2n n! q k 2 

X ( e-PK' H2n-211. ( srx ) ) • 
y2- s2 0 

(25) 

l)For the CO, molecule the numerical values of the param­
eters are s' = 1.57, f3' = 1.475, p = 0.196 (m·eV)" 1 , and r = 0.44 
(m·eV)"\12. 

In the approximate calculations we can replace 
the averaging over the molecule orientation in 
(15) by introducing a quantity 'Kav = ('K2 >n 112 

averaged over the orientation. As can be readily 
shown, the probability Wn defined in this manner 
decreases exponentially when E < D2/w, tends to 
a constant quantity given by (23) as E - oo, and 
has a maximum in the interval about E ~ r1'/w. In 
the particular case when n = 1 this dependence is 
given by the formula 

- 2 - 2 
Wn- exp (- P'Xav) (r2Xav+ 1/2), 

which has a maximum at 'K av = ( ro/2p) t/2• 
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