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We have investigated the spatial structure of the electric field associated with oscillations 
produced when a beam of fast electrons is injected into a semi-infinite plasma; the directed 
velocity of the beam electrons is much greater than the thermal velocity of the plasma elec­
trons. It is shown that under these conditions the energy lost by the beam in the excitation of 
oscillations is accumulated in a narrow surface layer at the boundary of the plasma, in which 
the relaxation of the beam occurs. The energy density of the oscillations in this layer can be 
appreciably greater than the energy density in the beam. 

1. The theory of two-stream instabilities available 
at the present time [t-B] explains a number of re­
sults that have been observed in experiments on 
beam-plasma interactions: these include the os­
cillation excitation conditions, the frequency spec­
tra, the growth rates, and the spreading of the beam 
distribution function that accompanies the insta­
bility (in the case of a low-density beam this 
spreading results in the formation of a plateau on 
the distribution function). However certain experi­
mental results such as the spatial structure of 
electric fields associated with oscillations produced 
by injection of a beam into a plasma cannot be 
interpreted within the framework of existing theory. 
This is the case because in the work cited above 
primary attention has been given to the develop­
ment of instabilities in an infinite plasma result­
ing from "single-shot" injection of a beam of 
charged particles into the plasma. Inasmuch as 
the excitation of the oscillations in this case is due 
to only one group of particles the energy density 
of the oscillations at the saturation level cannot be 
greater than the energy density in the beam. Fur­
thermore, the symmetry of the problem implies 
that the spatial distribution of the oscillations ex­
cited by the beam must be uniform. However, in 
actual investigations of the excitation of plasma 
oscillations by injection of a beam of fast electrons 
into a plasma [ 9, to] there has been observed a highly 
inhomogeneous distribution of electric fields: the 
fields are concentrated in a narrow layer (width 
of several centimeters) at the plasma boundary. 

In the present work, in order to explain these 
experimental results we have analyzed the problem 
under the assumption of continuous injection of a 

beam of fast electrons into a semi-infinite plasma; 
the directed velocity of the electrons u is assumed 
to be appreciably greater than the thermal velocity 
of the plasma electrons VTo· Under these condi­
tions excitation of oscillations takes place con­
tinuously as new fast electrons are injected into 
the plasma; the total energy of the oscillations can 
then be much greater than in the "single-shot" 
case. If the energy transport velocity vg is much 
smaller than the beam velocity u, the energy lost 
by the beam in the excitation of oscillations ac­
cumulates in a transition layer at the plasma boun­
dary. The volume density of oscillation energy in 
this layer E I Ekl 2 I 47r is then found to be very large 
and can be much greater than the energy density 
of the beam n0mu2/2. In particular, the condition 
vg « u is satisfied for plasma oscillations because 
for these oscillations vg ~. v~0/u. 

As the field strength in the transition layer in­
creases there is a more intense exchange of energy 
between the beam and the plasma oscillations and 
the width of the layer diminishes. This process 
continues up to the point at which the very large 
field amplitudes establish a stationary distribution 
for which the energy carried into the layer by the 
beam is equal to the energy carried away by the 
plasma oscillations. [sJ 

In the investigation of the development of the in­
stability we have paid particular attention to the 
nonlinear stage of the interaction. Since the inter­
action of the beam electrons with the plasma os­
cillations is a resonance effect the nonlinear effects 
appear in the beam much before they appear in the 
plasma. 

In this work we have analyzed the development 
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of the instability in two cases: The injection of a 
monoenergetic beam into a plasma and the injec­
tion of a beam with a smeared-out velocity dis­
tribution. In the smeared beam case (v e » Yk/k, 
v e is the thermal velocity in the beam and Yk is the 
growth rate for the most unstable part of the spec­
trum) with low density (n0 « N0, N0 is the plasma 
density) the basic nonlinear effect is the distortion 
of the beam distribution function; this distortion 
leads to the establishment of a plateau and satura­
tion of the oscillations at an amplitude at which 
there is still only a small nonlinear interaction be­
tween the modes so that the quasilinear approxima­
tion holds. [5-7] 

The development of the instability in the inter­
action of an initially monoenergetic beam with a 
plasma can take place in two stages: first there is 
a rapid [in a time ~ w01 (N0/n0) 1/ 3 ] smearing of the 
beam distribution function up to the point at which 
v e » Yk/k; this is followed by a slower [in a time 
~ N0/w 0n0] saturation of the oscillations and the 
establishment of a plateau on the distribution func­
tion. The nonlinear interaction between modes can 
become important when ve ~ y k/k; however, it is 
important that the largest contribution to the oscil­
lation energy comes from the fields generated at 
ve »Yk/k.CsJ 

It is shown in the present work that the injection 
of a monoenergetic beam into a plasma gives rise 
to the appearance of two layers of high field 
strength; these correspond to the two stages in the 
development of the instability. The field strength 
at long times t > N0/w 0n0 is a maximum in the sec­
ond layer and the basic part of the energy lost by 
the beam in the excitation of oscillations is concen­
trated in this layer. 

Since our basic purpose is the investigation of 
the time behavior of the formation of the transi­
tion layers at the plasma boundaries, our work 
differs from earlier work on the quasilinear theory; 
in this earlier work one obtained either nonsta­
tionary homogeneous solutions [ 5- 8] or stationary 
solutions; [s] in the present work we consider non­
stationary and inhomogeneous solutions of the equa­
tions of quasilinear theory. 

2. In the quasilinear theory the equations that 
describe the interaction of a beam and the plasma 
oscillations excited by the beam are 

~E_I:]__:_ + Vg 8JEnl2 = 4n2e2 ron!!..( Wn) IEnJ2. 
at OX mk2 ov \ k (2) 

In these equations f is the beam distribution func-

tion averaged over distances large compared with 
the wavelength of the oscillations and over time 
intervals large compared with the oscillation per­
iod; I Ekl 2 is the spectral density of the oscillation 
energy, wk is the frequency of the plasma oscilla­
tions: 

( 3k2T0 ) 
Wn ~roo 1 +-'J--2 , 

\ _,mw0 1 

v g is the group velocity: 

dron 3kTo 3vTo2 
Vg=--=--~--

dk mwo Vph • 

Equations (1) and (2) can be derived using the pro­
cedure usually employed in the quasilinear theory; 
however it is simpler to obtain them from the 
familiar equations for the homogeneous case[ 5- 7J 
making the obvious substitution a/at- a/at + va/ax 
in the equations for f and a/at- a/at + vgB/Bx in 
the equations for I Ekl 2• The oscillation spectrum 
in Eqs. (1) and (2) is assumed to be one-dimen­
sional1l and the waves propagate along the x-axis, 
which is perpendicular to the plasma boundary, 
along which the beam moves. 

In the derivation of Eqs. (1) and (2) it is assumed 
that the energy of the oscillations excited in the 
beam is small compared with the thermal energy 
of the plasma electrons: 

(3) 

under these conditions the variation in the macro­
scopic parameters of the plasma such as the den­
sity, temperature etc., which determine the fre­
quency and group velocity of the plasma oscilla­
tions, 2) is small; in Eqs. (1) and (2) the frequency 
of the plasma oscillations wk and Vg can then be 
taken as constant during the development of the 
instability. At the same time the change in the 
distribution function of the beam due to the inter­
action of resonance particles (v ~ Vph) with the os-

l)The oscillation spectrum can be regarded as one-dimen­
sional when the maximum growth rate occurs for waves that 
propagate along the beam; this is the case, for example, when 
there is a strong magnetic field in the direction of motion of 
the beam. [6 • 11] 

Z)The contribution of the beam to the real part of the di­
electric constant can be neglected since wk and vg are inde­
pendent of the beam parameters. In Eqs. (1) and (2), the cri­
teria that must be satisfied if one is to neglect terms associ­
ated with the real part of the dielectric constant of the beam 
for the homogeneous case are Yk/kve - n0 u0

3/N0 v8 3 << 1. In 
the inhomogeneous case there is a somewhat more stringent 
restriction which is obtained from the condition that the change 
in the vg due to the beam must be small Yklkv8 << vg/u0 • 
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cillations is extremely important, as are the non­
linear effects associated with this interaction. 
Hence nonlinear effects appear in the beam much 
before they appear in the plasma. This difference 
is due to the fact that the interaction of the plasma 
with the oscillations is not of a resonance nature. 
For this reason the plasma can be described by 
hydrodynamic analysis using the moments of the 
velocity distribution function averaged over time 
and space F 0• 

Using the nonlinear kinetic equation for F0 we 
obtain the following system of equations for these 
quantities: 3) 

oN a -+- (NU)=O f)t f)x ' 

au e "' G *G 1 a 1\'T (4) mfii=-zN"{;E" o*+Eh o-N ox ( )-eE0, 

where 

N = Mo = ~ Fodv, 
Mt 1 

U = --=- i F0v dv 
N N J ' 

T = -'J:· Mz = ; ~ Fov2 dv, Gn = ~ Fkvn dv. 

Here we have introduced the following notation: N 
is the plasma density, U is the directed velocity, 
T is the plasma temperature, Gn represents the 
moments of the k-th mode of the oscillating part 
of the plasma electron distribution function. 

The quantities Gn are determined in terms of 
the moments Mn from the solutions of the following 
equations: 4 l 

OGn OGn+t 
--- iwhGn + ikGn+t + --

f)t ox 

ne 
= --Mn-tEh (n = 0, 1, 2, 3). 

m 
(5) 

This system of equations follows very simply from 
the linearized kinetic equation for Fk· In the deri­
vation of Eq. (4) we have neglected terms of order 
E 2• In this same approximation, we can use the 
linearized equations in determining Gn; further-

3)In the last equation in ( 4) we see that there is an average 
field as a result of the polarization in the plasma. The analo­
gous term in the equation for the distribution function of the 
beam (1) can be neglected since it is easy to show, using Eq. 
(10), that (see below): 

!_Eo!!_ lv!J_ ___ i _ _!_ IEk I"·!!_ I v!!__ ~ 
m av ax 16:n:N0 m ax ~ av ax 16:n:N0 muve 

k 

4 )In Eq. (5) we use the small parameter kyTTm/wk « 1 and 
form a chain of equations by writing G4 = 0. 

more, on the right side of Eq. (5) the moments Mn 
are replaced by their initial values: N = N0 

= const, T = T0 = const while U is set equal to zero. 
The solution of Eq. (5) is obtained by making 

use of the fact that the Gn (like the oscillation am­
plitudes Ek) vary slowly over times ~ 1/w and dis­
tances ~ 1/k that is to say, the following conditions 
are satisfied: 

f OGnl 1 --~1. wGn f)t 

hence we need only retain first-order terms in the 
small parameter. The solution is 

G ekNo ( . 2 oE" 1 oE" ) 
o=--- ~E~t+--+--

mw~t2 Wh f)t k f)x ' 

G eNo ( . 1 oEk 6kTo oEk ) 
1 = --- ~E~t+--+---- . 

mwk Wh f)t mwk2 f)x 
(6) 

The last term in the expression for G1 is important 
in the equation for the energy of the oscillations 
excited by the beam [ (cf. Eq. (48)] but can be neglec­
ted in Eq. (4). Substituting G1 from Eq. (6) in Eq. 
(4) we obtain an equation for the plasma tempera­
ture: 

aT 1 aw 
7ft= No at' 

(W is the oscillation energy density), whence 

T = To + W /No 

(7) 

(7') 

(the contribution of the initial amplitudes has been 
neglected). 

Using Eqs. (6) and (7') in Eq. (4) we obtain the 
following equation for the directed velocity of the 
plasma particles 

au 1 a k a 1 aw 
Nom-=-- ~-IE~<I 2 -eNoEo-- (NTo)---. m ~m"~ h 2h 

(8) 

It follows from Eq. (8) that in the stationary case 
the mean force exerted on a plasma electron by 
the wave field is 

_ 1 aw 
p =- 21\'o ox ' (9) 

which coincides with the relation obtained in an­
other way by Gurevich and Pitaevskil. [t 2J Using 
the results of these authors it is easy to obtain the 
following expressions for the electron density per­
turbation and the mean electric field in the sta-
tionary case: 

1 
fJN=--W 

4To ' 
1 aw 

Eo= 4N0e f)x · (10) 

The restrictions on the changes in plasma 
parameters, which must be satisfied if we are to 
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neglect the change in frequency and group velocity 
during the development of the instability, are 

fJN < N0 , fJT ~ T0, U ~ vg ~ To/ mu. (11) 

Expressing the quantities oT, U and oN in terms of 
the oscillation amplitudes using Eqs. (7'), (8) and 
(10) and substituting the results in Eq. (11) we find 
that (11) reduces to (3). 

3. We now consider the solution of Eqs. (1) and 
(2). The analysis of these equations is first car­
ried out assuming vg = 0 in which case there is no 
transport of the energy of the plasma oscillations.5> 

Suppose that during the course of a time interval 
t0 into a plasma occupying the region x 2: 0 we in­
ject particles characterized by the distribution 
function f0(v). The boundary conditions on f are 
then as follows: 

f(t, 0, v) = fO(v)a(to- t), { 1, t;;:,: 0 
a(t)= 0, t<O. (12) 

At t = 0 the quantities f and I Ekl 2 are determined 
from the relations 

f(O, x, v) = fO(v), (13) 

where I Ekl 2 represents the thermal noise in the 
plasma. 

If af0/av > 0 over some velocity range apprec­
iably greater than the thermal velocity in the 
plasma the system is unstable and the oscillation 
energy increases with time. In turn the growth in 
oscillation energy leads to an enhanced diffusion of 
beam particles in velocity space which continues 
as long as a plateau is not formed on the distribu­
tion, that is to say, a region in which the distribu­
tion function is constant. In an infinite plasma the 
time during which the beam relaxes and the plateau 
is established on the distribution function is of 
order 

No ve2 1' 
To=----. 

no uo2 Wo 

When a beam is injected into a semi-infinite 
plasma two regions should be distinguished: 1) the 
region of large x (x » u0T 0) which the beam parti­
cles injected into the plasma reach in a time large 
compared with the relaxation time; in this region 
the boundary effects are obviously unimportant, 
2) the region of small x (x ~ u0T 0) in which the dis­
tribution of electric field is highly inhomogeneous 
and in which the relaxation time is a sensitive func­
tion of x. The electric field distribution can be 
investigated by means of the integrals of Eqs. ( 1) 

S)Since vg << u the velocity of energy transport by the 
beam, this approximation applies so long as the spatial gradi­
ents of I Ek 12 are not too large. 

and (2) which determine the spectral energy density 
of the oscillations excited by the beam in terms of 
the change in the distribution function. In order to 
carry out these integrations we first integrate over 
kin Eq. (1) substituting I Ekl 2af (w 0/k)/av from Eq. 
(2) in the resulting equation. In this way we obtain 

( Wo \ k=-v )' (14) 

Substituting the function f in the following form in 
Eq. (14): 

f(t,x,v) =f*(t,x,v)a(to-t+x/v), (15) 

where f * is a continuous function of x and t, and 
integrating Eq. (14) over time we obtain the follow­
ing relation for I Ekl 2: 

to+xfv 

+ v!_[ ~ dt' f*(t', x, v) J 
a.r: 0 

t 

+a ( t0 - t + _:_) v _a_[ ~ dt'f* (t', x, v)]}. (16) 
v ax t,+xfv 

In regions of large x (x » u0T 0) the inhomogeneity 
in f and I Ekl 2 due to the presence of the boundary 
is unimportant. In this case, when t > To from Eq. 
(16) we obtain the integral for the equations of 
quasilinear theory, which coincides with that ob­
tained earlier for the infinite plasma: [&- 7] 

4:rt2m I 
IE~<I 2 = ~- V 3 .l dv' (too (v') -f0 (v')) ,. (17) 

Wo v, 

where f 00 is the distribution function with the 
plateau: af 00/Bv = 0 when v 1 < v < v 2 and af/av < 0 
outside this range. 

Let us now consider the region of small x 
(x --5 u0T 0) for t » T 0• The spatial gradients off and 
I Ekl 2 are rather large in this region: ~x « u0t 
(~ is the distance over which these quantities 
change) so that the first two terms on the right 
side of Eq. (16) can be neglected. Furthermore, 
we can omit the term x/v compared with t and t0 in 
the limits of integration and in the argument of the 
a-function. Then, integrating Eq. (16) with respect 
to x we find 

4:rt2m [ t 
= ~- V s dt' (!* (t', UoTo, u)- fO(u)) 

Wo 0 

' -a(t0 -t)~dt'(f*(t',u0T0,v)-f0 (v)) J. (18) 
lo 



QUASILINEAR THEORY OF INSTABILITIES 941 

At the boundary of the region x = u0T0 the relaxa­
tion time of the beam remains of order T 0, that is 
to say, when t >To a stationary distribution is es­
tablished f 00(v). Neglecting small terms ~ T0/t in 
Eq. (18) we can replace the function f (t', u0T0, v) by 
the function f 00(v) which is independent oft. Then, 
from (18) we obtain the integral for Eqs. (1) and (2) 

in the region of small x: 
Uo't'c 

(" 4:rt2m 
J dx!Ea(t, x) 12 = --v3l(v)s(t); 
0 roo 

11 

J(v) = ~ dv' · v' (r''(v')- jO(v')), 
,, 

{ t for t <to 
s(t)= to for t>to 

(19) 

(19') 

(19") 

The height of the plateau in the distribution func­
tion f 00 in Eq. (19) is determined from the conser­
vation of particles in the beam: 

•• "' 
~ dv·vf"'(v)= ~ dv·vfO(v). (20) 

"' 
,, 

In the usual way the boundaries of the plateau v 1 

and v2 are determined from the conditions 

(21) 

We note that using Eq. (20) we can obtain an energy 
conservation relation from Eq. (19): 
Uoto 'V2 

~dxW(t,x)=~~ dvl ~~~v3l(v)s(t) 
Wo dv 

0 1'1 

"• 
(" mv3 

= J dv-2-(f0 (v)- f""(v) )s(t), (22) 
,, 

that is to say, the change in the total energy of the 
plasma oscillations in the region x ~ u0T 0 (the po­
tential energy of the oscillations W /2 and the 
thermal energy of the plasma N06T /2 = W /2) is 
equal to the energy brought into this region by the 
beam. 

Equations (19) and (22) determine the spectral 
density and the total energy of the oscillations con­
centrated in the region x ~ u0T0• These quantities 
continue to increase with time for t large compared 
with T 0• Comparing Eq. (19) with Eq. (17) we see 
that the mean value of I Ekl 2 in the region being 
considered is t/To times greater than the value of 
I Ekl 2 for x » u0T0• However, at large t the field 
distribution within the region x ~ UoTo is also highly 
inhomogeneous. As the field strength grows the 
diffusion in the beam becomes more rapid and the 
relaxation length is reduced. The layer of peak 
field strength, whose dimensions are determined 

by the distance in which the beam relaxation occurs, 
is then displaced toward the plasma boundary. 

The detailed structure of the spatial distribution 
of I Ek1 2 can only be found if the oscillation spec­
trum is narrow (in Vph). In the general case of an 
arbitrary spectrum we can solve the more limited 
problem of finding the dependence of relaxation 
length on time. By definition, if~ (T) is the relaxa­
tion length of the beam for t = T, then for t > T the 
following conditions are satisfied: 

j(t, £, v) = j"" (v); 

a!Ea(t,x)l 2 /at=O forx~6. (23) 

Making use of these conditions and Eq. (14) and 
making the same assumptions as in obtaining Eq. 
(19) we find 

s<t> 
~ dx o!Ea(t, x) 12 :rtm2roo vaJ(v) (t <to). 
o at Noe2 

It follows from t!lis equation that 

6(t) a!Eal2 ~ m2roo ~v' 
at e2 No ' 

(24) 

(25) 

where I Ekl 2 is the mean value of the spectral den­
sity of the oscillation energy in the bounded layer 
in which beam relaxation occurs. On the other hand, 
~ (T) can be estimated as the distance in which the 
beam particles diffuse (in velocity space) into a 
region of width t:::..v = v2 -vi ~ ve 

(26) 

Here 

is the mean value of the diffusion coefficient. 
Substituting I Ekl 2 from Eq. (26) in Eq. (25) we 

obtain the following approximate equation for ~ (t) 

Thus, 

d£ 1 
-+-6=0. 
dt 'to 

6 ~ UoTo exp ( -t /To), 

(27) 

(To is the beam relaxation time in an infinite 
plasma). The constant of integration is determined 
from the condition ~ ~ u0T0 fort ~ T 0• The quantity 
I Eki 2 is obtained from Eq. (26) where we substitute 
~ (t) from Eq. (27): 

va { t ) IEal 2 ~ n0m-exp 1 - . 
roo · 'to 

(28) 

Thus, the field strength in the narrow bounded 
layer x ~ ~ (t) increases with time much more 
rapidly than the mean value in the region x ~ u0T0• 
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We note that since the characteristic time To 
for the formation of the layer is relatively large 
(To~ 10- 7 sec for N0 R: 1011 cm-3, n0 R: 108 cm-3, 

!:!.v ~ v) the time variation of the process can be 
investigated experimentally. 

4. Because of the complexity of the original 
system (1)-(2) in the general case, we have only 
been able to obtain approximate expressions for 
the dimensions of the layer in which there is an 
appreciable electric field strength ~ (t) and for the 
value of I Ekl 2 in this layer. We can also obtain 
one particular solution of Eqs. (1)-(2) which makes 
it possible to investigate in greater detail the spa­
tial distribution of the electric fields associated 
with the oscillations. 

We take Eqs. (1) and (14) as the original eql..la­
tions. Since we are considering the region with 
large spatial gradients (x « u0T0) we can neglect 
Bf/Bt compared with vaf/Bx in these equations. 
The following system results 

!___( _!_ 8[Ekl 2 ) = :rtwom2 v '!!_ 
av v3 ot N 0e2 ax. 

(29) 

In the development of an instability the limits of 
the spectrum in vph are usually displaced in the 
course of time. However, there exists a class of 
problems with fixed boundaries: for example, when 
af/Bv ~ -oo at two points v = u ± v0• The oscilla­
tions in these problems are generated only in the 
phase velocity range u- v0 < v < u + v0 and the 
distribution function remains unchanged outside 
this range. 6l If the range of velocities correspond­
ing to this width is small v0 « u, following [6] we 
can write f and I Ekl 2 in the form 

j(t, x, v) = r +A (t, x) (v- u) 

(A(t=O) -8J0 Iau), 

IEk(t, x) 12 = 1I2B(t, x) [vo2 - (v- u)2] 
(k = Wo I v). (30) 

Using Eq. (29) we can write the following system 
of equations for A(t, x) and B(t, x): 

oA e2 
-a-=- -2-2 AB, x mu 

aB :rtwom2 8A --=----u"--at N0e2 ax . (31) 

It is easily shown that the solution of this system 
is 

6 )The existence of a class of problems with fixed bound­
aries has been indicated earlier by Vedenov.[•]. 

A(t, x) = (of0 I au) (~2(t) I (x2 + £,2(t))], 

B(t, x) (nwom2 I Noe2)u"(ar I au) To{x I [x2 + ~2 (t) ]}; 

(32) 

Here 

To= -2 No ( ar )-1_1 =:::No Vo2_1 ~(t) = UToexp(- f!To), :o:: 
.,. u2 au wo no u2 wo · 

Thus, when x > UTo exp (-t/T0) a plateau is es­
tablished on the distribution function; for a fixed 
value of x I Ekl 2 first increases with t but approaches 
the following constant value when t > T 0 ln (uT 0/x) 

IEk ~ 12 = 1l2(muom2 I Noe2) u4 (aj0 I au) (To I x) 

XTvn2 - (v- u) 2], 

which increases as x is reduced. 
The change in the spatial distribution of the os­

cillation energy as a function of time is shown in 
Fig. 1. The maximum value of I Ekl 2 in the plasma 
increases with time and is displaced toward the 
boundary. Using Eq. (32) we can obtain the total 
oscillation energy for a given k in the region 7l 

4:rt2m ajo Vo2- (v- u)2 
=--u"-a 2 t, 

Wo u 
(33) 

which coincides with Eq. (19) obtained in the gen­
eral case. 

II 

B X 

X 

FIG. 1. A and B as functions of x for various values of t. 

5. In all of the preceding analysis we have as­
sumed vg = 0. However, although v ~ v~ofu0 
« u0, if the spatial gradients of I Ek1 2 are large 
there may be important terms v g a I Ekl 2 I a X that 

7)In this case the approximation expression (32) can be ex­
trapolated to x - ur0 because when t >> r0 these values of x 
give a small contribution in the integral (33). 



QUASILINEAR THEORY OF INSTABILITIES 943 

imply significant transport of energy of the plasma 
oscillations. These terms impose a limitation on 
the growth of 1Ek1 2• If the VgoiEkl 2/ax term is 
retained in the equation for the spectral density of 
the oscillation energy Eq. (24) is replaced by 

~) a IE (t x) 12 4n2m 
J dx "-' -+vgiE,.(t,~)l 2=--v3J(v). (34) 

0 ot Wo 

In this case, the expression for ~ (t) is given by 
d~/dt +~/To = vg. i.e., 

~ ~ Uo"Co exp(-t /'to} + Vg'to[i- exp(-t f <o)J. (35) 

When t-oo 

if the condition N0T0 » n0mu5 is satisfied. This 
condition is less stringent than that given in (3) be­
cause the energy density of the oscillations is ap­
preciably greater than the energy density in the 
beam. As before, the time dependence of I Ekl 2 in 
the bounded layer is determined by Eq. (26) in 
which we must use ~ (t) from Eq. (35). 

The maximum amplitude of the oscillations in 
the bounded layer is reached when ~ -~min. This 
amplitude is 

(36) 

The relation that has. been derived has a simple 
physical meaning: at the maximum amplitude the 
energy removed from the layer x < ~min by the 
waves is equal to the energy carried into this layer 
by the particles in the beam. The maximum ampli­
tude of the oscillations given by Eq. (36) was found 
by Vedenov[sJ who considered the stationary prob­
lem 8/Bt = 0, 8/ox ""0 in the quasilinear approxi­
mation. In this case a bounded layer with high field 
intensity does not arise since the field given by Eq. 
(36) is displaced with velocity vg from the boundary 
into the depth of the plasma and when t > L/vg (L 
is the dimension of the region occupied by the 
plasma) the stationary distribution found in [sJ is 
obtained. 

A stationary distribution has evidently not been 
produced in a number of experimental investiga­
tions of beam-plasma interactions.[s,toJ For ex­
ample, in [ 1oJ the plasma oscillations were excited 
by a pulsed beam with pulse length t0 « L/vg. In 
the experiments of Kharchenko [sJ a magnetic field 
was used so that the modes exhibited anomalous 
dispersion dw /dk < 0 in which case the oscillation 
energy is not transported in the direction of motion 
of the beam. 

6. We now consider the development of an in­
stability arising in the interaction of an initially 

monoenergetic beam kv~/Yk « 1 and a plasma. 
The basic difference between this case and the one 
considered earlier is the fact that in the monoener­
getic beam the width of the velocity range in which 
there is a resonance between the beam particles 
and the k-th mode is large compared with v e the 
thermal velocity of the beam lv- Vphl .$ Yk/k; 
hence the entire beam is in resonance with the 
wave. 

In this case the beam is treated by a hydrody­
namic description based on the moments of the 
distribution functionf: n = f jdv, f is the density, 
u = n-1 J dv · vf is the directed velocity, 
® = n-1 Jdv m (v- u) 2f is the beam temperature. 
These quantities are described by the following sys­
tem of equations obtained from the kinetic equation 
for f: 

on a 
--at+ax(nu)=O, 

( au au ) e • • 1 a 
m ·~+u- = --~ (E,.gok +E,. go,._)---0 (ne), 

at OX 2n h. n X 

ae ae au e ~ • • 1 oQ 
-+u-+26-= --LJ (E~tglk +E,. g!,._)---0 . 
at ax ax n k n ;x 

(37) 
Here we have used the notation 

Q = ~ dv m ( v- u) 3 f, g.=~ dv(v- u)• f,. 

The gs are the moments of the oscillating parts of 
the distribution functions fk. The system of equa­
tions for the gs is obtained from the linearized 
kinetic equation for fk. We have 

ag. ag. 
Tt + i(kuo- w,)gs + uo ox + ikgs+l 

+ og,,+t = - s eE, J.ls-1; 
ax m 

J.ls = fdv(v- u)•f, s = 0, 1, 2, 3. (38) 

We first investigate the initial (hydrodynamic) 
stage in the development of the instability in which 
the change in the directed velocity and the thermal 
energy of the beam due to the effect of the oscilla­
tions is small so that the following conditions are 
satisfied for all x: 

Y( = lk6u/ (kuo- w,) I ~1, 

;:] = k28/m(ku0 -w~t) 2 ~1. (39) 

In this stage the change in beam parameters does 
not cause a change in growth rates: the Yk are then 
determined by the initial values of these param­
eters, which are assumed to be independent of x. 
Initially.. the oscillation energy increases in time 
in accordance with the relation I Ekl 2 

= I E~l 2 exp (2ykt) and is also independent of x. 
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The solution of Eq. (38) in the case in which Ek 
is uniform has been obtained earlier. [8] Neglecting 
terms of order 71 and 1/ in the solution we have 

kg1k eno E,. 
go!< = - k . , gik = - -- . k . · uo- Wk- ''Yk m l( Zlo- w,.- tv~<) 

(40) 

Substituting g 1k in the last equation of (37) and 
omitting the terms ~ BQ/8 x, 88 uja x, we obtain 
the following equation for 8 8> 

as as 2e2 ~ V~< -+ uo-=-LJ-1 E,.(t) 12, at ax m I< ~I< 

~I< = (kuo- w,.)2 + V1<2• (41) 

The solution of this equation that satisfies the 
condition 8(0, x) = 8(t, O) = 8 0 is 

e2 ~ 1 E,. (t) 12 
S:::::: So+ -LJ S,.(x) 

m,. ~,. 

2''• :::::: So+--a"L IE,.(t)I2 S,.(x); 
8rc ,. 

S,.(x) = 1- exp [ -2y~x I uo], a= (no I No) '/a< 1. (42) 

To obtain the last relation we have made use of the 
fact that I Ekl 2 ~ exp (2ykt); thus under the summa­
tion sign we can replace the factor in front of the 
exponential by its value for the most unstable mode 
k = w0/u0 so that 

Substituting the function g0k from Eq. (40) in the 
equation for u (x, t), neglecting n- 1 a (n®)/Bx (this 
requires k~~ » 1) and solving the resulting equa­
tion, we have 

e2 kuo- w,. 
u (x, t):::::: u0 - :---z ~ 1 E,. (t) l2k 2 S,. (x) 

m ,. ~k 

1 
:=::::ua- 4 ~~E,.(t)1 2 S,.(x). (43) 

rtnomuo k 

The first equation of (37) is then solved for n (x, t) 

n(x, t)=no{1+ 2e: ~ IE,.(t)12kkUo-cok. 
m k ~,.2 

' X ( 'YkX I uo2) exp [- 2v,.x I uo] . (44) 

The variables n, u and ® as functions of x and t 
are shown in Fig. 2. It is evident that these quanti­
ties are sensitive to x only when x .$ ~ ~ ~ u0/ aw 0 

in which case 

B)The criteria that must be satisfied when 1Eki 2 is inde­
pendent of X are of the form: 18ul << Yk~g·· e << mu.~g0Yk21Wa 
where ~go is the distance over which the beam parameters u 
and El change in the stage being considered, ~g"-uaiYk· 

I /)u I' e ,...., 1 - exp ( -2x /;g0); 

n,...., const + xexp (-2xl6l). 

Outside of this range n, u and ® are essentially 
independent of x and on - 0 while u and ® are 
given by expressions reported earlier [sJ for the 
case of a beam interacting with an infinite plasma. 

II 

n 

------tz ------t, 

______ t, 

------tz 

a: 

FIG. 2. The density, directed velocity, and temperature of 
the beam as functions of x and tin the initial stage of devel­
opment of the instability. 

Equations (42), (43), and (44) apply at low oscil­
lation amplitudes in which case the following con­
dition is satisfied: 

1 
~(t)= 2 ~ IE,.(t)12 <1. 

anomno h 

When {3 ~ 1 in the region x > ~ ~ 

kuo- Wk m(ku0 - w,.) 2 

1 6u 1 ,...., auo·,...., , e ,...., a2rnuo2 ,...., _ _:___~-=--
k k2 ' 

i.e., the condition in (39) is violated. The beam is 
then spread out so much that kvehk ~ 1 and its 
subsequent relaxation can be treated in the quasi­
linear approximation. The beam remains mono­
energetic in the region x ~ ~ ~ and when {3 ~ 1 (the 
hydrodynamic layer) the characteristic time for 
the increase of amplitude in this layer remains of 
order 1/y0• 

Thus, when an initially monoenergetic beam is 
injected into a plasma, at high field amplitudes, in 
which case {3 ;c 1 there arises a boundary x = ~ g 
through which a beam with a smeared out velocity 
distribution enters the plasma kveiYk ~ 1. The 
relaxation of this beam is the same as that des­
cribed earlier; the oscillation energy in this case 
is given by Eq. (19) in which the lower limit of in­
tegration on x is ~ g and f 0 is the distribution func­
tion with v 8 ~ au0 and u ~ u0• The oscillations are 
concentrated primarily in the region ~ g < x < ~ 

where ~ is given by Eq. (35). The beam,remains 
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monoenergetic in the region x < ~ g and the charac­
teristic time for the development of the instability 
in this region is ~ 1 aw 0 i.e., much smaller than 
for large x. The width of this region ~ g = ~ ~ 
~u0/aw 0 for {3 ~ 1; as ~1Ekl 2 increases, ~g is re­
duced. 

7. We now obtain an equation that determines 
the time variation of the energy in the hydrody­
namic layer and the thickness of the layer ~ g for 
{3 » 1 when .; g « ~ ~. In this case we have from 
Eq. (38) 

(45) 

where Ek is the mean field amplitude for x ~ ~g· 
Substituting Eq. (45) in the equations for u and ® 
(37) we have 9l 

au e2 "Q --- !:g2 
uo-- ~ --LJ k I Ek 12 _:--, 

fJx m2 k uo2 

ae e2 ~- ~g 
Uo--~-~ 1Ekl2 -. 

fJx m k uo 
(46) 

Integrating these equations with respect to x we 
obtain an approximate expression which gives the 
variation of e and u within the hydrodynamic layer. 
Making use of the fact that e ~ a 2mu5 at the boun­
dary of the layer, we obtain from Eq. (46) a rela­
tion that gives the layer thickness: 

~g~~[~J'/, 
UWo ~ (t) 

(4 7) 

and the retardation of the beam in the layer 

(47') 

Equation (47) determines the reduction in .;g with 
increasing {3. 

In order to find the time dependence of the os­
cillation energy in the bounded layer we use the 
energy conservation relation: 

Here we have used the following notation: 
& = n(mu2/2 + ®/2) is the energy density in the 
beam, u0 ( & + P) is the density of the energy flux, 
P = n® is the pressure. Equation (48) can be ob­
tained easily by making use of the fact that the den­
sity of energy dissipated per unit time in the beam 
is 

9 )In the equation for 8 the tenn with n-' aQ;ax can be neg­
lected if .fg << ,fg0 ; this is easily shown if one estimates Q by 
means of an equation analogous to Eq. (37). 

1 "Q (E . B* + E •. B) 1 f) w 1 "Q (E . • + E' •. -2 LJ kJk k ]k = -,----2- LJ k]kP k ]kP). 
"- 2 at k 

In this expression jk is the oscillating part of the 
plasma particle current 

hP =- e ~ dv-vFk =- eG1, 

where G1 is determined from Eq. (6}. 
Let us first investigate the case vg = 0. Omitting 

in Eq. (48) the term a & /Bt which is unimportant 
when .;g « u0/y0, integrating Eq. (48) from 0 to .;g 
with respect to x and substituting at the boundary 
of the layer ou from (47') withe ~ a 2mu5, we have 

~g -· aw (t x) 
\ dx--'-- ~ an0mu02~gyo. ·o at 

(49) 

From Eqs. (47) and (49) we have approximate equa­
tions giving the time dependence of W = ~I Ekl 2 I 4rr 
and .;g 

W ~ anomuo2y0t, ~g ~ no I awo(y0t) '"· (50) 

According to Eq. (50) the energy density of the os­
cillations as well as the total energy in the layer 
both increase as t increases: 

t 
"g 

~ dx lV (t. x) ~ anomuo3 (t I y0} '"· (51) 

The increase in oscillation energy continues un­
til the transport of oscillation energy at high am­
plitudes becomes important. Retaining terms ~vg 
in Eq. (48), in place of Eq. (49) we obtain the 
following relation: 
~ 
•g 
\ fJW(t,x) 1 
~ dx- a-t-+ -4 ~ Vg I Ek(t, ~g) 12 ~ anomuo2~gyo. (52) 
0 ~ k 

The maximum oscillation amplitudes are deter­
mined from the condition 

(53) 

Substituting .;g from Eq. (47) we have finally 

_ uo ( NaTo )'h ;;mtn~- __ _ 
g roo nomuo2 · 

(54) 

If the coqdition n0mu5 « N0T0 is satisfied the 
quantity .; :;un is large compared with the wavelength 

u0/w 0 but much smaller than the minimum width of 
the second layer given by Eq. (35). 

The time growth of the oscillation energy in the 
second layer, in which there is a quasilinear relax­
ation of the beam, is given by Eq. (19} when 
t > N0/w 0n0• The height of the plateau is obtained 
from Eq. (20): 

(55) 
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The width of the plateau is approximately 

v1 ;:;:;;; 1/~ln [No uo J 
V 2m n0 (2nT0 / m)'i; ' 

i.e., in the case of an initially monoenergetic beam 
the particles diffuse to a velocity of the order of 
the thermal velocity in the plasma. 

In Eq. (19) we can neglect f 0 compared with f 00 

for all Vph with the exception of a narrow range 
lvph - u01 ~ om0 which gives a small contribution 
in the oscillation energy (~a). Thus, from Eq. (19) 
we have 
Uoto 

('" V2 V2 - v12 
J dx j Ek (t, x) ]2 = 2n2nomv3 - t (t < to). (56) 

Wo V22 - V12 sg 

Summing over all modes from kmin = w 0/v 2 to 
kmax = w 0/v1 we obtain the total energy of the os­
cillations 

Uol'o 

c 1 1 
J dxW(t, x)=~;nomuo(uo2 -vi2)t;:;:;;;Tnomu03t. (57) 
sg 
max I Ek (01 2 in the second layer is given by Eq. (36): 

8 uo 1 v2-v2 I Elimaxm ]2 = -Jt2nomu'•---- 1 • (58) 
' 3 Wo Uro2 u22 - u 12 

The maximum value of the oscillation energy den­
sity in the second layer can be appreciably greater 
than the energy density in the beam: 

(59) 

Thus, the relaxation of an initially monoener­
getic beam at large t > N0/w 0n0 is characterized by 
two layers with high field intensities. The dimen­
sions of these layers are determined by Eqs. (54) 
and (35); the largest field strength obtains in the 
second layer. The expressions for the energy den­
sity (54) and (59) can be compared with the corre­
sponding expressions for the case of single-shot 
injection: we see that the oscillation energy is con­
siderably greater in the continuous injection case: 

by a factor of (u0/vTo) 4/ 3 in the first layer and a 
factor of u5/v~0 in the second. 

The authors are indebted to G. Ya. Lyubarskil 
and A. A. Vedenov for discussion of these results. 
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