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Formulas are found for the dissipative particle and heat currents in electron-phonon systems 
in a strong magnetic field. The Nernst effect and the coefficient of thermal conductivity per­
pendicular to the magnetic field are calculated for nondegenerate electrons in the quantum 
limit. 

1. The difficulties of constructing a quantum theory 
of galvano- and thermomagnetic phenomena in 
metals and semiconductors are connected with the 
consideration of spatial inhomogeneities of elec­
tronic systems. Inhomogeneities of such systems 
in space are generally caused by the action of for­
ces of statistical nature, produced by gradients of 
temperature and of chemical potential. These for­
ces are essentially macroscopic and can not be 
included in the Hamiltonian of the system. For this 
reason one usually limits oneself to the calculation 
of purely dynamic forces. If in this situation one 
assumes the validity of Einstein's relation, connec­
ting the diffusion coefficient and the electrical con­
ductivity, and of Onsager's principle of the sym­
metry of the kinetic coefficients (or assumptions 
equivalent to this principle, cf. R. Kubo et al. [ 1]), 

then it is possible to find the kinetic coefficients in 
the presence of gradients of temperature and of the 
chemical potential. As was shown in a work of Silin 
and the author[ 2J, Einstein's relations and Onsager's 
principle for collisionless currents in a quantizing 
magnetic field are not satisfied in relation to the 
phenomenon of Landau diamagnetism. In such a 
situation it is interesting to attempt to calculate the 
currents without relying on Einstein's relation and 
Onsager's principle. The necessity for calculating 
currents of charge and of heat arises in the con­
struction of a theory of thermomagnetic effects. 

It will be shown below that in the calculated heat 
flow and conduction current the kinetic coefficients 
satisfy both Einstein's relations and Onsager's 
symmetry principle. It will also be shown that the 
Boltzmann-Bloch collision integral, written in the 
space of the complete set of quantum numbers de­
scribing the state of an electron in a magnetic field 
in the Landau representation, can be used exten­
sively for calculation of various kinetic coefficients 
in a linear transport theory. 

The formulas obtained for the currents are ap­
plied to a calculation of the Nernst-Ettingshausen 
coefficient and the thermal conductivity in the quan­
tum limit for a nondegenerate electron gas, with 
inelastic scattering of electrons by phonons taken 
into account. 

2. We digress briefly regarding the method used 
in this work to calculate currents characterized by 
collisions, since it is not a standard one. Usually 
the current-density matrix j, for example, is cal­
culated by means of the density matrix p by use of 
the formula 

j = Sp(pJ), (1) 

where j is the current-density operator. 
Since the macroscopic current } must satisfy 

the continuity equation, it follows that for spatially 
non -uniform and nonstationary processes the con­
tinuity equation 

- !__ n(r, t) = div j(r, t) 
Ot 

must hold, where n is the density of particles. 

(2) 

If one were to succeed in deriving from kinetic 
theory Eq. (2), which relates the observed quanti­
ties n (r, t) and j (r, t), then one would simultaneously 
succeed in finding the kinetic coefficients that de­
termine j. For derivation of (2) from kinetic theory 
it is necessary to have a kinetic equation with a 
collision integral that is suitable for description of 
spatially nonuniform distributions. Such a collision 
integral is an integral operator with respect to the 
spatial variables and, for example, has for elastic 
scattering the form 

1[/v(r,t)]= ~ ~dr'wvv•(r-r'){fv•(r',t)-/v(r,t)}, (3) 
v' 

where fv(r, t) is the distribution function and r the 
coordinate of a particle in state v, and Wvv' (r- r') 
is the probability of transition per unit time. 
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If a characteristic distance of variation of f is 
L, and if L » r 0, a characteristic distance at which 
Ww' (r - r') differs appreciably from zero, the 
collision integral can be expanded as a series in 
the small parameter r 0/L. The zero-order term 
of this expansion coincides with the usual collision 
integral for spatially uniform distributions and 
vanishes when the distribution is locally in equili­
brium; the subsequent terms of the expansion will 
contain the spatial gradients of the distribution 
function. 

If slow processes in the system are considered, 
then f usually depends on the spatial coordinates 
through macro-parameters (for example, the tem­
perature T and the chemical potential t). For such 
processes, the terms of nonzero order in r 0/L will 
be proportional to the gradients of T and t. If we 
require that the time rate of change of f shall be 
proportional to the spatial gradients alone 1>, then 
it is necessary to set the terms of zero order in 
r 0/L equal to zero; this determines fv (r, t) for slow 
processes as the local equilibrium function. With 
the aid of such a collision integral, we obtain from 
the kinetic equation 

iv(r, t) = l[f.,(r, t)) (4) 

after substitution in it of the local equilibrium dis­
tribution function and integration over v, the con­
tinuity equation (2), from which j also is found. It 
is possible to obtain continuity equations, analogous 
to ( 1), for other quantities also; for example, for 
the energy and the pz components of momentum. 
These determine the current densities of the corre­
sponding quantities. 

3·. For calculation of collision-producing cur­
rents, we use Boltzmann-Bloch collision integrals 
in the space of the quantum numbers in a magnetic 
field, n, pz, and y 0, determined by the Landau 
representation. Such a collision integral was used 
earlier in work of Akhiezer, Baryakhtar, and 
Peletminskil [ 3] for describing a rarefied plasma 
in a magnetic field, when retarding radiation intro­
duces a contribution in the relaxation of electrons, 
and in work of Taputs and the author [4] and in [5] 
in study of the interaction of electrons in a mag­
netic field with spatially nonuniformly distributed 
phonons. 

The kinetic equations for spatially nonuniform 
systems, with the Pauli principle taken into ac­
count, have according to [ 3- 5] the form 

l)This is equivalent to the requirement of minimum entropy 
production. 

In, Pz (Yo) 

~ 21i:rt [ Cq )2 [1- Pn•nexp (- (1.2qx: -Tiq,: z )] 
n',q Yo P 

X Fn•n ((1,2qj_2/2) 6 (En•, p 2 +nq 2 -En, p2 -Tiffi} 

X {[/n',p 2+nq 2 (Yo+ (1.2qx) 

-In, Pz (Yo)] Nq (Yo)+ ln',P 2 +nq 2 (Yo+ (1,2qx) 

Xl[1- fn, Pz (Yo)]}; (5) 

. O(i) &N q ~ 2:rt I c 12 F ( 2 2j2) Nq(y)+-,.---= L.J -Ti· q n•n(J,qj_ 
uqy &y n', n, p z• Yo 

X 6 (En', P,+nq, -En, Pz- Tiffi}-{[/n•, p 2+nq, (Yo+ (1.2qx) 

-In, Pz (Yo)] Nq (Yo) + fn•, P,+nqz (Yo+ CX2qy) 

X [1- In, p (yo)l}6(y-yo)+{Nq0(y)-Nq(y)}ffilf(q); 
z 

F n'n (t) = ( -1 )n+n' exp (- t) Ln·n-n' (t) Lnn'~n (t), 

L~ (t) = ~ (n + s ) (- t:m ' 
m=o n-m m. 

qi=qx2+qv2• (1,2=1ij!J.Q, Q=[eiHffJ.c, 

En, Pz = 1iQ (n + 1/2) + Pz2/2fl, (6) 

Cq is the electron-phonon interaction constant, and 
Wff is the frequency of relaxation of phonons in 
contact with a thermostat with a given distribution 
of temperature T (y0, t); for brevity in writing the 
electron-phonon collision integral, the operator 
Pnn' of the substitution n' ~ n and the shift opera­
tor of the arguments Yo and Pz• 

exp {- a2qx a:o- hq, a~. } 

have been introduced; finally, Nq(Y) is the distribu­
tion function of the phonons, and fn, pz (y0) is that 
of the electrons (a diagonal element of the density 
matrix). 

The kinetic equation for Nq contains the nonelec­
tronic relaxation mechanism of the phonons with 
frequency Wff(q). It is assumed that Wff(q) consid­
erably exceeds the frequency of relaxation of the 
phonons by interaction with the electrons. This 
likewise guarantees stability of the local equili­
brium distribution of the phonons. Actually, a 
phonon distribution function locally in equilibrium 
causes the last term in (6) to vanish, and Wff will 
appear nowhere in the final results, provided that 
Wff considerably exceeds the relaxation frequency 
of the phonons with respect to the electrons. If this 
condition is not fulfilled, then it is necessary to 
take account of the effects of entrainment of pho­
nons, which lead to a deviation from local equili­
brium[5J. 

A diagonal matrix element fn, Pz independent of 
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y0 describes only a spatially uniform distribution 
of the density of y 0-centers of Larmor orbits, 
whereas fn, pz(y0) already corresponds to a spa­
tially nonuniform distribution. In a linear theory 
of irreversible processes it is usually assumed 
that the external parameters T and !; , and together 
with them also fn, pz(y0), change appreciably only 
over a macrodistance L » l ~ rL (L ~ T/I\7TI 
~ !; /l\7s I, where l is the length of the free path and 
rL is the Larmor radius). 

In such a situation it is possible to introduce the 
concept, for example, of a local temperature for 
the electrons, if it is possible to localize them 
within limits L. Since L » rL, the condition of 
localization of an electron with respect to y does 
not require a distinction between the coordinate y0 

of the center of the Larmor orbit and the coordinate 
y of the electron. In other words, over a de Broglie 
wavelength the external forces proportional to \7T 
and \7!; remain practically constant. This circum­
stance allows us to go over to a classical descrip­
tion of the motion of the center of a Larmor orbit 
and to treat y0 as the coordinate of an electron. 
The presence of the small parameter rL/L (more 
accurately, (rL/L)(tiqx/p) « 1, where pis the mean 
momentum of an electron) offers the possibility in 
(5) and (6) of going over from an integral operator 
with respect to Yo to the Fokker-Planck differential 
form. This means practically that the collision in­
tegral remains quantal only in the variables n and 
Pz and is classical in y0• As soon as one succeeds 
in reducing the collision integral (5) to the Fokker­
Planck form, the problem of deriving the continuity 
equation (2) becomes elementary. 

4. To find the current density of particles, we 
multiply the kinetic equation (5) by the square of 
the modulus of the eigenfunction of the electron in 
the staten, Pz• y0, viz. a- 1 <I>~((y- y 0)/a), and sum 
over the spin and over n, Pz• and y 0; then we get 
on the left 2l 

n (y, t) = 2 f)at ~ _1._ In, P, (Yo) <Dn2 ( y- Yy__). 
a , a 1 

n, Pz• Yo 

If in the equality thus obtained we substitute the 
local equilibrium functions Nq(Y) and fn, p(y0), with 
T = T0 + 6T(y0, t) and!; = !; 0 + 6!; (y0, t), and then ex­
pand the right side with respect to a 2qx. we get the 
continuity equation (2), in which the collision -pro­
ducing current of particles is 

jy(s) = ( :: r ~ dqzdq_j_q_j_3[ ch li;- 1 rl (7)* 

X { Wet<E + liw - \;o) V yT-I - Wet< 1) T-l V y\;}, 

2la-Y'1>n ((y- y 0 )/a) is the normalized eigenfunction of the 
harmonic oscillator. When rL/L << 1, a-'<I>n '((y - y0)/ a) may be 
replaced by the delta function o(y - y.). 

*ch =cosh. 

where 

{
.(En, p ,- ~o) _ (En, P, + liw- ~o)l 

X f \ To I To , J. (8) 

5. We proceed to the calculation of the collision­
producing (dissipative) heat current. We multiply 
Eq. (5) by 

(En, T'z -so) a-!(!),2 ( (y- Yo) /a), 

and (6) by tiwq and sum the first over n, pz, and Yo 
and the second over q. Further, we introduce an 
expansion of the collision integrals as series in 
a 2qx; and in complete analogy with the derivation 
of formula (7) for the dissipative particle current, 
we find the equation of heat-energy balance, 

iJ r'<Vn, N ( ) I 2 '<\:!(" dyo E 
- 7ft -~ Wq q Y T (2ncx,)21i 7 J dpz -----;--- ( n, Pz 

r ) f ( ) "" 2 (Y- Yo)] f) W (s) -,o n,p2 Yo ""n -ex,- =By y , 

in which w~s) is the current of heat, transported 
both by electrons and by phonons, and is equal to 

(9) 

X'{- T-1wef <E + nw- \;o) Vy\; 

+ Wef < (E + nw- ~o) 2) VyT-1}. (10) 

The kinetic coefficients in the densities of con­
duction current (7) and of heat flow (10) satisfy 
Onsager's symmetry principle 3l. 

Fro mula (7) for the electrical current at \7x T 
= 0 agrees with that found by the method of Kon­
stantinov and Perel' [ 7] in the work of L. Gurevich 
and Nedlin [8], if in (7) ( -e-1\7xs) is replaced by the 
electric field intensity &x· This means that the 
coefficients of &x in the formula for the current, 
from the work of Gurevich and Nedlin [8], and of 
(-e-1 \7xs) in (7) are the same, i.e., the diagonal 
components of the diffusion and electrical-conduc­
tivity tensors satisfy Einstein's relation. This re­
sult can also be obtained by including an electric 
field in the treatment from the very beginning; 
however, for lack of space we are unable to dis­
cuss this question further. 

6. We proceed to the calculation of the Nernst 
coefficient and of the thermal conductivity perpen­
dicular to the magnetic field at zero current, in the 
essentially quantal case, when tin » T. This par­
ticular case is of interest because the coefficient 
of ther~al conductivity calculated earlier increased 

3)Formulas (7) and (10) can be derived from the equations 
of motion of the density matrix [6], 
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without limit as T approached zero. The reason for 
such a result lies in the fact that in the nondissipa­
tive charge and energy currents, Einstein's rela­
tion was assumed to be satisfied. According to [ 2] 

and the Appendix to the present work, this relation 
holds only for the components of these currents­
the conduction flow and heat current-that are im­
portant for thermo- and galvano-magnetic phenom­
ena [ 9]. 

For calculation of the thermomagnetic effects 
indicated above, the coefficients in the nondissipa­
tive heat currents and in the conduction flow are 
necessary. Such coefficients can be found by use 
of the collisionless charge and energy currents 
calculated in[ 2J (cf. Appendix). In the case of in­
terest to us, that of the quantum limit and of non­
degenerate electrons, we have 

jy = -CJxyEx + ~xy V' xT, 

Wy = -X,xyEx + 'Xxy'VxT, (11) 
where 

Xxy = T~xy = T { e-1axy (3/z - ~'IT)}, CJxy = ceN Ill, 

Xxy = e~NTr:- 3-~+ c~~ r} • 
~' = ~- ~Q =Tin ( (2:n:a2)fiN \ 

2 2 ( 2:rt~-tT) '!, ) 
(12) 

N is the electron density, and Ex = & x- e- 1Y'xt. 
The kinetic coefficients in the dissipative cur­

rents are determined by formulas (7) and (10). In 
the quantum limit there enters into these coeffi­
cients according to (8), for the case of nondegener­
ate electrons, 

2:n:Eo2N q [ ( liw )] 
Wef <E + liw - ~o> = lispo (2:rt~tT) '/, Fzl 1 - exp - T 

X {[ (~-tw I qz)2 + (liqz I 2)2] I 2~-t + 1iw I 2- n 
(13) 

Here it is taken into account that for longitudinal 
phonons ICql 2 = E5nq/sp 0V, where E0 is the defor­
mation-potential constant, p 0 is the density, s is 
the speed of sound, and V is the volume of the sys­
tem. 

Below we consider the case in which the basic 
contribution to the interaction with electrons is 
made by long-wavelength phonons with wave vector 
q < 1/ a « T /ns. In this case the integrals with 
which the kinetic coefficients are expressed in the 
quantum limit can be evaluated without difficulty by 
the following method. In the integration over qz, 
the basic contribution to these integrals comes 
from the region 

( q,) min ~ qz ~ ( qz) max, (14) 

where 

( qz2) min = ~lS2 I 2a2T, ( qz2) max = SfAT I 1i2. ( 15) 

Outside this region the integrand is exponentially 
small. In the integration we replace the exponents 
containing qz by unity and take q ~ 1/ a; then we 
find 

Here 

au = Oo In ( 4aT I lis) = <Jyy, 

~xx = ~ Xxx = 0
: { 1 - ~ ln ( 4~~ ) J = ~YY• 

Xxx = ~~ T [ -~ - 2 i' + ( ~ r ln ( 4:: ) J = 'Xyy, 

Ne2 fAEo2 
<Jo = --To, To = v = f'2:n:T / fA, 

fA 2:n:~(1is)v ' 

u0 is the electrical conductivity at H = 0. The 
formula for uxx agrees with that found earlier by 
Gurevich and Firsov [tO] 

The currents (11) and (16) enable us to obtain 
formulas for the Nernst effect, the thermal conduc­
tivity, etc. In the case of nondegenerate electrons 
in the quantum limit ilg » T, the Nernst coefficient 
Q is determined from the equation 

Eu = HQVxT (17) 

and is equal to 

Q _ .~ CJxx _ 3-~ln( 4aT ) 
- 2e Haxy- 2 fAC !is ' (18) 

the coefficient of thermal conductivity at zero cur­
rent, in this same limit, has the form 

(19) 

APPENDIX 

In the works of Silin and the author[ 2J the non­
dissipative charge and energy currents were calcu­
lated in the following form: 

ceN c ::! ~ ( 1 ) 
jy = - H &x-+-. H1'o (2:n:aFh Li /iQ n + f 

n 

[ 
En, P,- ~o J 

X ~ dpzf ( 1 - f) V x~ + l'o V x1' , (A.1) 

Q -- eN (E+E·) J:' +_:-~::! __ ~nQ( n+ i_\ 
Y- H ~ \:)x eHTo (2:rta) 21i Li \ 2 ) 

n 

[ 
En,P,-~o ] 

X ~dpzEn,pJ(1-j) Y'x~+ To VxT. (A.2) 

Here & x is the electric field; 

N(E + E1..) = (Z:n:~)21i ~ ~ dpz{ En, Pz + nQ~ n + })}t. 
n 
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and the coefficients in front of 6x, Y'xt, and Y'xT 
in (A.1) and (A.2) were expressed in terms of 
derivatives and integrals of the thermodynamic 
potential 

Q(~,T,H) 

2T [ (~-En, P.}. 
=- (2:rta)2/i ~ ~ dp,ln{ 1 + exp T ]} . 

n 

After simple transformations one can write 

jy = c rotyM + Uc }y, 

~0 

(A.3)* 

Qy={ ~[ ~orotyM +To( a~J.) d~rotyM J + c6xM} 
-00 

+ ~(i c h+ (QT }y, (A.4) 
e. 

where 

ceN ( 1 ) c (j c )y =-II 6x- e Vx~ + 7isVxT, (A.5) 

(QT)y =- ~ Tos( 6x- ~ V x~) 
w 

+ _c_ ~ d~ (.To as_) V xT; 
eH -oo \ aTo t;,H 

( ~~) = -s, 
~. H 

( ~~ ) = - N, ( ~~) = - M. 
•• T 

(A.6) 

From formula (A.3) it follows that the volume 
current density, in agreement with [ 9], separates 
into two terms: a "molecular" current c curl M 
and a conduction current Ody· Formula (A.5) was 
written in such a form by Obraztsov 0 by considera­
tion of the total current (in this case also surface 
current) across a cross section of the specimen. 

Formula (A.4) contains a number of terms that 
have different physical meanings. Specifically, the 
term c 6xM in curly brackets represents the con­
tribution to the Poynting vector from the magneti­
zation, c 6 x [H - B) I 47r. The further expression 
containing the curl of the magnetization also corre­
sponds to a current density of magnetic energy, 
which, as is known, is indeterminate by the curl of 
an arbitrary vector. Here, as in the case of the 
"molecular" current, one may speak of the vanish­
ing of the corresponding contribution to the total 
energy current across a cross section of the whole 

*rot = curl. 
4 )1 take this occasion to express my gratitude to Yu. N. 

Obraztsov for acquainting me with his work ["] before its pub­
lication. 

specimen. The term e-1t 0(jc)y in (A.4) describes 
an energy current produced by transport of parti­
cles (conduction current); and, finally, the last 
term represents the desired volume density of heat 
current. 

The conduction current (A.5) and the heat flow 
(A.6) cannot depend on gradients of the magnetiza­
tion. Presence of such terms in (A.5) and (A.6) 
would lead to a contradiction of the principle of 
increase of entropy. One can establish this by 
means of a proof given in[ 9] (cf. § 25), by replac­
ing there the gradient of pressure (density) with 
the gradient of magnetization (magnetic field). Such 
a substitution is possible if the magnetization vec­
tor is parallel to the magnetic field. 

The kinetic coefficients in (A.5) and (A.6) satisfy 
both Einstein's relation and Onsager's symmetry 
principle. In fact the basic circumstances of the 
thermodynamics of irreversible processes [ 9] ap­
ply to the heat flow ~nd the conduction current. 
These currents must also be assumed in the basic 
theory of thermomagnetic phenomena [ 9]. 

In the special case of nondegenerate electrons, 
the coefficient of Y'xT in (A.6) is equal to 

(A. 7)* + ( -i+ZcthZr+Z2 (shZ)-2}, 

S=N(3/2 +ZcthZ-~/T), Z=hQ/2T. (A.8) 
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