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The effect of heating of electrons in a plasma and in semiconductors by an electromagnetic 
field is investigated, along with the effect on the field propagation of the nonlinearities assoc­
iated with this heating. The character of the damping of the field is studied both for the non­
resonant case, when the nonlinearity of the Maxwell equations is small, and also for magneto­
plasma and cyclotron resonances, when there is strong nonlinearity. The dependence of the 
surface impedance on the amplitude and frequency of the incident electromagnetic field and 
on the external constant magnetic field is also determined. 

THE nonlinear dependence of the electric current 
on the electric field in the electron gas of a plasma 
and in semiconductors is evident even for rela­
tively low electric field intensity. [ l-3] This fact is 
connected with the large value of the mean free 
path of the electron in these media and the slow 
transfer of the energy from the electron to the 
scattering centers. 

The effect of the nonlinearity on the propagation 
of electromagnetic waves in the electron gas is of 
considerable interest, both theoretically and ex­
perimentally. However, to our knowledge, only the 
paper of Gurevich [4,] has been devoted to this par­
ticular problem. In this paper, the analysis is car­
ried out with the help of an elementary theory ap­
plicable to the ionosphere, while the effect of the 
magnetic field has not been taken into account in 
any practical sense. In the work mentioned, several 
interesting results were obtained which show the 
sharp difference between nonlinear and linear 
propagation. 

However, it is necessary to remark that the ele­
mentary theory is applicable fundamentally for 
scattering of current carriers by neutral mole­
cules. Even for scattering by charged ions, the ap­
plication of the elementary theory can lead to sig­
nificant errors. [4] This is even more true for 
semiconductors, in which different types of scatter­
ing centers exist, and the simultaneous scattering 
by several of them can be substantial. The ele­
mentary theory does not in principle allow us to 
calculate the distribution function of the current 
carriers, which is essential for a number of prob­
lems. Thus, the range of problems that can be 

magnetic field on the propagation of strong electro­
magnetic waves 1> both in the nonresonant and in the 
resonant regions. For nonlinear media, significant 
interest attaches to the interaction of the harmon­
ics. From what has been pointed out above, it 
follows that an analysis by means of the elementary 
theory, as carried out by Gurevich, [4] does not 
take into account a number of important factors. 

In the present paper, a kinetic theory is con­
structed for the propagation of strong electromag­
netic fields in an electron gas, in semiconductors 
and in a plasma located in an external magnetic 
field. In contrast with the work of Gurevich, [4] 

where it is applied to the ionosphere, and where it 
was assumed that the electron gas filled a layer 
with smoothly chang-ing properties, we shall as­
sume that the current carriers fill a half-space. 
This corresponds to the experimental conditions 
for semiconductors and for plasma under labora­
tory conditions. 

1. KINETIC EQUATION. DIELECTRIC PERMIT­
TIVITY TENSOR 

The distribution function of electrons in a semi-
conductor and electron -ion plasma in an electric 
field of arbitrary magnitude and in an external con­
stant magnetic field <I> can be written in the form[ 1•2J 

«D (p, r, t) = f(e, r, t) + x(e, r, t)p I p, (1.1) 

where p is the momentum (in the case of a semi­
conductor, the quasi-momentum) of the carrier, r 
is its coordinate, t the time, E = p2/2m the energy 
of the carrier, m the effective mass of the carrier. 

solved by the elementary theory is very limited. l)Those electric fields will be called strong for which 
There is great interest in the effect of a constant there is a nonlinear dependence of the current on the field. 
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The functions f ( E , r, t) and X ( E , r, t) satisfy the 
following equations 

of 1 a ( { ep ~ ·[ of f l)) _ _)___~-- n(e) -xE-A(e) ~+- r =0, 
at n (e) oe 3m oe T J J ( 1. 2) 

Flx + ep E -~t- wH [h, xl + _x_ = o. (1.3)* 
at m oe 't(e) 

Here the following notation has been introduced: 
n (E) = 47rp2dp/ dE is the density of states in energy 
space, E(r, t) is the electric field, A(E) the diffusion 
coefficient in energy space, T the equilibrium tern­
perature in energy units, WH = I e I H/mc, H being 
the constant magnetic field and h the local magnetic 
field, and T (E) is the relaxation time. If the carrier 
interacts with several scattering objects simul­
taneously, then A(E) = ~Ai(E), T-1(E) = ~TJ: 1 (E); the 
summation is carried out over all forms of scatter­
ingY 

In the present work, effects associated with spa­
tial dispersion are not taken into account, i.e., 
space derivatives are omitted from (1.2) and (1.3). 
The conditions under which this neglect is possible 
were discussed by Ginzburg and Gurevich. L 1•2•4] 

Further simplifications of the system (1.2), (1.3) 
can be obtained under definite assumptions regard­
ing the time dependence of the electric field. 

Most interest attaches to the case in which the 
electric field is a periodic function of time. We ex­
pand the field in a Fourier series: 

00 I 

E(r, t) = ~ E<ql(r)eiq"'t. (1.4) 
q=-oo 

Since E(r, t) is real, it follows that E(q) = E(-q)*. 
The prime on the sum indicates that the term with 
q = 0 has been omitted in the sum of (1.4). We 
shall seek also the solution of the system (1.2), 
(1.3) in the form of a Fourier series: 

00 

j(e,r,t)= ~ j<ql(e,r)eiq"'t, 
q=-00 

00 

x(e,r,t) = ~ x<ql(e,r)eiqffit, (1.5) 
q=-00 

where 

j(q\ = j(-q)•' x<q) = x<-qJ• · 

Eliminating x(q) from (1.2) with the help of (1.3), 
and equating the coefficients of each of the factors 
of eiqwt to zero, we get the following set of equa­
tions for the determination of f(q): 

*[h, x1 = h x x 
2)In ['• s, 6] A (f) and r(E) are expressed in terms of the 

scattering probability. 

1 i) 2e2e oo I oo I 

iqwf<q)-- -{ n(e) [ -- ~ ·~ B;~<[(ql 1 qz)w] 
n (e) iJe 3m q,~-oo q,~-oo 

+A (e) (of<q) I oe + t<qJ IT)]}= 0. (1.6) 

As has been shown in a number of papers (see, for 
example, [ 1• 2J), 

1 fj { ( fjj(q) j<q) )} j<q) 

n(e) fJe n(e)A (e) Te + T ~ ~· .. 

where Te is the relaxation time for the energy as­
sociated with the relaxation time for the momen­
tum T by the relation Te ~ E2T/(6E) 2• Here 6E is 
the energy transferred by the current carrier in a 
single collision. The system (1.2), (1.3) holds if 
6E/ E « 1 so that T e » T . If it is assumed that 
WTe » 1, then it follows from (1.6) that f (q)/f <ol 
« (qwTe)-1 « 1 for q "'0. 

Solving Eq. (1.6) by the method of successive 
approximations in (wTe)-1, we get the following 
equation for f <ol after several transformations: 

dj<0J I de+ j<0l IT (e) = 0, (1. 7) 

where 

(1.8) 

e Zik is a completely antisymmetric unit tensor of 
third rank. Equation (1. 7) should be normalized. 

The solution of Eq. (1. 7) has the form (the index 
0 in f <o> will be omitted in what follows) 

8 d } 
j(e) = CN exp{- ~ T(:) , 

00 8 d } 
C = ~ den(e)exp{- ~ T(£) , 

o o e 

N is the carrier density. 

(1. 9) 

It follows from (I. 9) that f (E) does not depend on 
time. A detailed discussion of this fact for a mono­
chromatic wave and its physical interpretation are 
given in the works of Ginzburg and Gurevich. [1,2] 

We note that 
eo 

~ B;~<<q>E;<qlE~<<q)• 
q~l 
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is always larger than zero. 
Since the kinetic equation for X [Eq. (1.3)] has 

the same form as for weak fields, the dielectric 
tensor is _given by the usual expressions (see, for 
example, [tJ), where, however, f is' determined by 
Eq. (1.9). 

In the set of coordinates (1)-(3) in which the 
magnetic field is directed along the axis 3, we get 
the following relations for the components of the 
permittivity tensor: 

32 y2rr.2m'!.e2 
eu<qJ = J + ------,,----

3wq 

2. PROPAGATION OF STRONG ELECTROMAG­
NETIC WAVES OF HIGH FREQUENCY FAR 
AWAY FROM RESONANCE (GENERAL THEORY) 

We shall consider the field to be high frequency 
if the following inequality is satisfied: WqTe » 1. 
Furthermore, it is also assumed in Sees. 2 and 3 
that all frequencies wq differ appreciably from the 
frequencies of magnetoplasma resonance w 1, 2 and 
the Larmor frequency w H· i.e., that the following 
inequalities are satisfied: 

We now introduce the set of coordinates (x, y, z) 
in which the magnetic field lies in the yz plane. 
We restrict ourselves to one dimensional problems, 
i.e., we assume that the field and the distribution 
function depend only on a single coordinate, for ex­
ample, on z. The Maxwell equations in the set of 
coordinates (x, y, z) for the one dimensional case 
have the following form 

dl-Ex(q) Wq2 • ---+- [AqEx<qJ + !BqEy<q>] = 0, 
dz2 c2 

dl-Ey(q) I Wq2 . , 
--1 --[- !B,1E)q>+ GqEy<q>] = 0, 

dz2 c2 

sin tl' 
E (q)-- , {e!z<q>Ex<ql 

z - sin2 tl'eu<ql + cos2 tl'eaa<q> 

+cos tl'( Eaa(q)- eu<ql)Ey<ql}; (2.1) 

COS 'frE12(q)E33(q) iB = ___ ____:.:__:_:__-----:---:--
q sin2 tl'eu<qJ + cos2 tl'eaiql 

eu<q>e33(q) 
G= 

q sin! tl'eu<q> + cos2 tl'e33(q) 
(2.1') 

,J is the angle between the z axis and the magnetic 
field. 

The set of equations (2 .1) is identical in form 
with the analogous set for the case of weak fields. 
There is an essential difference, however, in that 
Aq,' Bq. and Gq depend on all the Fourier com­
ponents E(q) and, consequently, the propagation of 
strong electric fields is described by an infinite 
set of nonlinear differential equations. 

We note one peculiarity of the propagation of 
strong electromagnetic waves for WT e » 1. As is 
seen from Eqs. (1.10), the dielectric tensor does 
not depend on the time. This circumstance leads 
to the result that the frequency spectrum of the 
propagating field does not change. Thus, if a strong 
electromagnetic wave containing the two harmonics 
with frequencies w1 and w2 is incident on a half­
space filled with plasma, then the spectrum of the 
wave which propagates in the half-space will also 
consist only of these two frequencies. Combination 
and multiple frequencies appear in the higher ap­
proximations in (wTe)-1. On the other hand, the 
damping of the field of the q-th harmonic, and, under 
the definite conditions, its phase also will be de­
termined by the Fourier amplitudes of all the re­
maining harmonics. 

If damping can be neglected (if v = 0), then, 
since WH does not depend on the energy in the case 
of a quadratic dispersion law, all the integrals in 
(1.10) can be computed. In this case the nondissi­
pative part of the dielectric tensor has the same 
form as in linear theory. If at the same time the 
electron concentration does not depend on the field, 
then for any strength of electric field in the med­
ium, plane monochromatic waves will be propaga­
ted with the same index as for linear theory. One 
can show that in the case of a nonquadratic disper­
sion law, under the neglect of damping, mono­
chromatic plane waves are also propagated in a 
semiconductor and the principle of superposition 
is satisfied, although the nondissipative part of the 
dielectric tensor depends on the amplitude of the 
field in this case. 

After neglecting quantities of the order of v /wq, 
v/\ wH -wq\ in Bik(q) in comparison with unity, 
the equation for T(E) in (1.8) is described in the 
following way: 

( v(e)e \ 
T·(e,v)= T 1 +---U02 v2 I, 

A (e) I 
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"" 
u2 = ~ y;h<q> E;<q> Eh<qJ•, 

q=l 

(2.2) 

where u0 is the value of u at the point z = 0. 
Substituting (2.2) in Eqs. (1.10) and expanding 

the integrands in these formulas in powers of 
v/1 WH -wql, we get 

(2.3) 

Using (2.3) and the definition of Aq, Bq, Gq [see 
(2.1)], we also find expressions for these quanti­
ties: 

Bq = Bq' + iBq''~(v2), 

(2.4) 

In Eqs. (2. 3) and (2 .4), the following designations 
have been introduced: the prime and the double 
prime denote the real and imaginary parts of the 
corresponding quantities which have the same form 
as in linear theory, while cp(v 2) is defined by the 
formula 

CT "" d 8 d 
cp(v2)=- ~ 8 8'hv(8)exp{-~ 1'(8: v)}' Vo 0 T (e, v) 0 

00 

Vo =Co~ d8·8'i'v(8)e-e/T; 
0 

(2.5) 

w~ = 47Te2N/m, C0 is the normalized equilibrium 
constant of the Maxwell function. 

If the electron concentration does not depend on 
the field, and in what follows we shall assume this 
to be the case, then the entire dependence of the 
dielectric permittivity on the electric field is de­
termined by the functions cp (v 2) • We note that the 
second components in Eqs. (2.3) and (2.4), which 
are proportional to cp (v2), determine the dissipation 
field and are small in comparison with the first 
components. 

Solving the set (2.1) by the WKB method (for the 
applicability of this method to the present case, 
see[1J), we get 

E;(q) = E;0(q) exp{- w: [ inqz + Xq ~ ~(v2)dz ]}, (2.6) 

where nq is the index of refraction of the ordinary 
or extraordinary wave, Kq is the damping of the 
ordinary or extraordinary wave in linear theory. [ iJ 
In Sees. 2 and 3, we do not need to know their im­
plicit form. We note that under the approximations 
we have made, K << nq. 

The Maxwell equations (2.1) give the following 
connection between the different components of the 
field: 

i(Aq'- nq2 ) 
Eu<qJ = Bq' Ex<qJ = KqEx<q>, 

sin-6-
E,<qJ = - ---· 

sin2 '6-8u(qJ + cos2 '6-8aa<qJ 

It is evident that Kq and Lq do not depend on the 
electric field and have the same form as in the 
linear theory. 

The infinite set of nonlinear integral equations 
(2.6) can be solved in the following way. Substitut­
ing E~q) from (2.6) into the expression for v2, we 
get 

m 2 ~ 
v2 = uo-2 ~ Yih(qJE;o<qJEho(q)• exp{- :q Xq ~ ~(v2)dz }· 

q=l 0 

We make a change in variable, setting 

z 

w = exp{- 2~ ~ cp(v2 )dz }. 
c 0 

We then have the following expression for v 2: 

"" 

q=i 

We introduce the function ~ (w) = cp(v 2(w)). It is 
easy to see that cp(v 2) can also be expressed in 
terms of w in the following form: 

~(v2) =- __:__~ dw. 
2w w dz 

Equating these two expressions for cp(v 2), we finally 
obtain the following differential equation for the de­
termination of w: 

c 1 dw 
----=6(w). 

2w w dz 
(2.9) 

The solution of this equation, under the obvious ad­
ditional condition w(O) = 1, has the form 

(2.10) 
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Equations (2.10) in principle completely solve the 
stated problem-the first of them gives w(z) in im­
plicit form, while the second expresses any of the 
Fourier components of the electric field in terms 
of w(z). 

Let us consider the limiting cases of small and 
large z. For small z, the function w is close to 
unity, and w~ (w) in the first equation of (2.10) can 
be removed from under the integral sign at the 
point w = 1. In this limiting case, Eqs. (2 .10) take 
the following form: 

2w 
w=1--~(1)z, 

c 

E;<qJ = EiO(q) exp{- i~q nqz }( 1- Wcq Xq~(1)z). (2.11) 

Now let z be large. If the right hand side of the 
first of Eqs. (2.10) approaches infinity, then the 
left hand side must approach infinity also. In view 
of the fact that ~ (w) nowhere vanishes, the left hand 
side of the first of Eqs. (2.10) can approach infinity 
only as w- 0, because then the integral in this ex­
pression diverges logarithmically. 

We now determine the asymptotic value of w for 
large z. We note that~ (0) = 1. This follows from 
(2.5) and (2.8). Actually, for w = 0, the function 
v 2(w) = 0 and, consequently, the distribution func­
tion (2. 7) goes over into the Maxwell equilibrium 
distribution function, as a consequence of which 
~ (w) = cp (v2(w)) goes to unity. Taking this circum­
stance into account, we rewrite the integral on the 
left hand side of (2.10): 

1 dw 1 dw 1 dw I __ = I __ (~-1(w)-1)+ ~ _ 
~ w~(w) ~. w . ;., w 

1 
I d 1-~(w) 1 

=~ w ws(w) -nw. 

The integral on the right hand side of this identity 
converges, because 1- ~ (w)- 0 as w- 0. There­
fore, the upper limit in this integral can be set 
equal to zero for large z (small w). Thus, the 
following equality holds for the determination of w 
at large z: 

1 

~ dw 1 - ~(w) -ln w = 2w z, 
0 w~(w) c 

w = exp{ ~ dw 1- 6(w} 2cw z}, 
0 w~(w} 

whence 
1 

Ei(q) = EiO(qJ exp[ ~ qxq ~ 
2 0 

1- ~(w) Wq J 
( dw - - ( inq + Xq) z . 

w~ w) c 

(2.12) 

We now compute the change of the reflection co­
efficient and the index of refraction as the result 
of the nonlinear dependence of the current on the 
field. We limit ourselves to the case of normal 
incidence of the electromagnetic wave from the 
vacuum on the plane separating the vacuum from 
the plasma semiconductor. 3) For definiteness, we 
consider the incidence and refraction of the x com­
ponent; they and z components of the electric 
field can be obtained by means of (2. 7). On the 
plane of separation z = 0, the following boundary 
conditions must be satisfied: 

&Ex(q) {0) &Ex(q) ( -0) 
__ :_:_ = . (2.13) 

&z &z 

The last condition in (2 .13) follows from the con tin­
uity of the magnetic field. 

We obtain the reflection coefficient and the index 
of refraction in the following way. The field inci­
dent from the vacuum will be sought in the form 4> 

Ez(q) = & (q) [ exp (- i· Wcq z ) + P q exp ( i :q z) J. (2 .14) 

where Pq is the reflection coefficient and & (q) is 
the amplitude of the field in the vacuum. The index 
of refraction Rq is defined by the relation 

Rq = E(q>(-0) I &(q>. 

Substituting the expression for the electric field in 
the semiconductor from (2.10), and the field in the 
vacuum from (2.14) in (2.13), we find expressions 
for Pq and Rq: 

1-nq 
P9o=-1-, -, -rnq 

2 
Rqo = 1 + nq' 

(2.15) 

Here Pq0 and Rq0 are the reflection coefficient and 
the index of refraction in the absence of dissipa­
tion, while oPq and c5Rq are the corrections to them 
associated with the presence of damping in the med­
ium. In a weak electric field, ~ (1) = 1 and oRq 
= c5Rq0 = 2iKq/(1 + nq) 2, where c5Rq0 is the corre­
sponding value of linear theory. It is interesting 
that the ratio c5Rq/c5Rq0 does not depend on the num­
ber of the harmonic q. 

The field Ef~) entering into ~ (1) can be ex-

3)The generalization to the case of oblique incidence is 
trivial (see [•] ). 

4 )The index x is omitted everywhere below where it 
does not lead to ambiguities. 
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pressed in terms of the amplitude of the incident 
wave by means of the relation E~q) = Rq0 & (q) and 
the relations (2. 7). Making the corresponding sub­
stitutions, we find the following expression for the 
value of u5 entering into ~ (1): 

00 

noz = ~ Mq I &(q) 12, 
q=1 

(0H2 + --;2 (wH2 - 3wl) I Lqcos {} + Kq sin{} 12 

q 

+ 4wqWH lm (Lq sin 'l't- Kq cos{}) J . (2 .16) 

We note that equations of the type (2.15) do not solve 
the boundary problem for an arbitrary form of the 
field incident from the vacuum on the separation 
boundary. 

In the linear theory, the field inside the mag­
netoactive plasma consists of two normal waves, 
the superposition of which is also a solution. By 
means of this superposition, one can satisfy the 
boundary conditions (2.13) for arbitrary polariza­
tion of the field incident from a vacuum. 

Under conditions of nonlinear propagation, the 
principle of superposition does not hold, and the 
theory constructed in the present paper describes 
the possibility of excitation of only one of the nor­
mal waves. In order that the "ordinary" or "ex­
traordinary" waves be excited in the specimen, the 
x and y components of the incident field must be 
connected with the first of the relations (2. 7), which 
imposes additional requirements on the polariza­
tion of the wave incident from the vacuum. 

3. PROPAGATION OF STRONG ELECTROMAG­
NETIC WAVES OF HIGH FREQUENCY FAR 
FROM RESONANCE (LIMITING AND PARTICU-

energy in explicit form. This dependence has been 
repeatedly computed for various types of scatter­
ing centers, and it has been shown that A(E) and 
T(E) are determined by the following formulas: 

A (e) = Au(T) (e I T)r, T(e) = To(T) (e I T)l. (3.1) 

The values of r and l for various forms of scatter­
ing are given in the Table. The bars in the first 
column of the last three rows indicate that energy 
exchange does not take place in scattering by the 
impurities. Generally speaking, it is possible that 
the transfer of energy by the carrier is realized by 
one type of scattering, and that of momentum by 
another type, so that r from one row can corre­
spond to l from another. 

The integral in (2.5) can be computed in terms 
of elementary functions in two cases: 

1) the external field can be regarded as very 
strong, i.e., 

n2v(e)e / A(e) ~1; 

2) the fields are arbitrary, but r and l are con­
nected by the relation r + l = 1; this relation is 
satisfied in scattering by acoustic, piezoacoustic, 
and optical phonons. 

Let us first consider case one. Neglecting 
small quantities in the integrand expressions of 
(2.5), we obtain the following expression for~ (w): 

~(w) = 1Jll(r, l) ( ~ Y [v(w)]-21/(r+l), 

. r l _ ( ~ \ ( 3 - 2l ) / ( 3 - 2l ) ( __ 3 ) 
IJ!I(' )-r 2Jf 2(r-\-l), r 2 r 2(r+Z) ' 

~ = ( Tuo2(r + l) )1/(r+l). 
T AoTo 

(3.2) 

The distribution function in a strong electric 
field has the form 

LAR CASES) r + l ( 3 ) 
f (e) = 4'"' ,r-2 r-1 2 (2 + l) m-'heo-'f,v-3 

In the preceding section, formulas were obtained " r 

which describe the distribution of the field in an 
electron gas, the change in the coefficient of re­
flection and the index of refraction, etc. The re­
sults were expressed there in the form of quadra­
tures. For subsequent investigation, it is necessary 
to make some additional assumptions. 

To evaluate the integrals in Eq. (2.5) it is neces­
sary to know the dependence of A(E) and T(E) on 

{ ( e )1/(r+l)} 
Xexp -,- . 

eov2 
(3.3) 

It follows from (3.3) that the distribution function 
is normalizable if r + l > 0. It has been shown 
previously["] that the distribution function is 
normalizable for arbitrary statistical electric 
and magnetic fields if the inequalities 

Form of Scattering I I II Fori? of Scattering 

Acoustic oscillations 
Optical oscillations 
Piezoacoustic oscillations 

Neutral impurities 
Charged impurities 
Dipole impurities 

0 
3/2 
1/2 
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r+Z>O, r-l>O (3.4) 

are satisfied or, which amounts to the same thing, 
r > 0, r > l > - r. These conditions are carried 
over without change to variable electric fields. In 
what follows they will be assumed to be satisfied. 
Starting out from Eq. (3.2), one can immediately 
write down the expressions for the change in the 
coefficient of reflection and the index of refraction: 

2ixq ( Ao'to ) l/(r+l) 

oRq= (1-i-nq)z\jl,(r,Z) -T-;_oz(r-i-l) . . (3.5) 

In order to carry through the integration in the 
first of Eqs. (2 .10) to conclusion, we make another 
assumption, namely, we assume that one of the 
harmonics in the incident wave, for example, the 
first, has an amplitude that is significantly larger 
than the rest; then only the first term in the infinite 
sum (2.8) remains, as the result of which the 
following formulas are obtained: 

s(w)=\jl,(r,l) ( :Y w-lx,/(r+l), 

-~o_ = ( TM, I &<'> j2(r + l) f(r+l). 
T Ao'to , 

(3.2') 

Carrying out the integration in (2.10), we immed­
iately get 

[ 
(J) l ( T )I J(r+l)/x,t 

w= _1-2~ (r-i-l) \jl,(r,l)x1 .-;- z . 

[ 2(1) z ( T )l Jq(r+ll><ql2!x, 
E(q) = Roq&(q) 1----\jli(r, l)x, - z 

c r+ l Bo 

X exp( - iwq nqz J . 
c ' 

(3.6) 

The average energy of the current carrier is also 
of interest: 

(3.7) 

It is interesting to note that when l = 0 the linear 
relation between the current and the field is pre­
served regardless of the dependence on the field 
strength, and the expression for the field (3.6) 
goes over into the ordinary formula of the theory 
of the linear skin effect with an exponentially 
damped field. For other values of Z, the field is 
damped according to a law that is slower than ex­
ponential. 

We now proceed to the analysis of the derived 
expressions. We first investigate the dependence 

of the effects under investigation on the amplitude 
of the external electric field & (q). It is seen from 
(3.1) that E0/T ~I <S (q) 12/(r +Z), i.e., E0/T increases 
with the increase in the electric field because 
r + l > 0. The value of l can be both larger and 
smaller than 0. The electric field and the average 
energy fall off with increase in z both for l > 0 and 
for l < 0; however the character of the fall-off is 
different for each of the two cases. The character­
istic dimension over which the field decreases 
significantly is 

c ( eo ) 1 ( eo ) 1 o ~-- - ~ Oo - , 
WX! T T 

where the damping length in linear theory is de­
noted by D0 = c/wK 1. Equations (3.2)-(3. 7) were 
obtained under assumptions equivalent to the as­
sumption €/T » 1, and consequently, E0/T » 1. 

If l > 0, then D > D0, i.e., the characteristic 
damping distance in the theory of a strong field 
for this case is much larger than in the theory of a 
weak field. Here all the electrons whose energy is 
much larger than T (the "hot" electrons) are con­
centrated in a layer whose thickness does not ex­
ceed Din order of magnitude. This is seen directly 
from Eq. (3.7). Actually, E goes to zero, for the 
case l > 0, for z = (r + Z) D/2Zij! 1 (r, l ). The factor 
in front of D is of the order of unity. Further, the 
criterion for the applicability of the theory is the 
condition €/T » 1. Thus the theory is inapplicable 
for z ~D. 

The thickness D1 of the layer in which the "hot" 
electrons are concentrated can be estimated roughly 
by assuming E to be of the order of T: 
D1 ~ [1- (T/E0) 1]D. In the estimate, the numerical 
factors of the order of unity have been omitted. 
We note that D1 » D0• For l < 0 and D « D0, similar 
estimates show that the "hot electrons" can occupy 
many layers of the thickness D, but D 1 < Do because 
E ~ T for D ~ D0 . The dependence of the penetration 
depth of the field and the change in the coefficient 
of reflection and index of refraction on & (q) is 
easily established: 

0 ~ (8Rq)-l ~ j &(q)j21/(r+l). 

If the condition r + l = 1 is satisfied, then the 
distribution function (2. 7) becomes Maxwellian with 
effective temperature 

El(w)=T[i+ uoZT v2 (w)]. 
Ao'to 

(3.8) 

Simple integration leads to the following expression 
for~ (w): 

s(w) = (T I El(w) ) 1, 

whence we have for DRq: 
(3.9) 
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6R = q 1 +--2ix [ u02T J-1 

q ( 1 + nq) 2 Ao'to 
(3.10) 

In order to carry out the integration in Eqs. 
(2.10), we again assume that the amplitude of the 
first harmonic is much larger than the amplitude 
of the remaining harmonics. We further note that 
for all real processes of scattering, l is a half in­
teger (see the table) ( l = J.L - 1/2 where J.L is an 
integer). The only exception to this rule, l = 0, is 
not of interest because in this case Ohm's law 
holds. With account of these circumstances, we 
have 

w _ f.L "Q 2 ( 8'(x) )h-'/,,1 
2- X1Z - -- LJ--- ----

C I f.L I k 2k - 1 T w 

(8'(x)/Trt,-1!1 
+ ln (8' (x) /Trh + i w' 

8'(x) ~~ = 8'(b)- El'(a). (3.11) 

Here the summation over k is carried out in the 
limits from 1 to J.L for J.L > 0 and from 0 to - (J.L + 1) 
for J.L < 0. 

Equation (3.11) gives w(z) in implicit form. We 
consider the limiting case of large z: 

ZX1w/c~1, W<~i, 8'(w)/T~1. 

We write down the expressions for the fields: 

( 
4 )qxq/2x, 

E<q) (z) = Rqo{!,(q) 8' ( 1)/ 1'- 1 

X [ ( 8' ( 1) / 1') '/, - ~ ... ]qxq,2x, 
(8'(1)/ T)'r, + 1 

{ qxq ( f.L ~ 1 [ 8' ( 1) . ]) 
X exp ~ ~ "; 2k- 1 -T--- 1 

- ~q- ( inq + Xq) z } . (3.12) 

In the case of a strong electric field e'(1)/T » 1 
for the ratio of the field within the body of the 
specimen to its value in the linear theory we have 
the following formula: 

£(q) =(_li!_)qxq/2x, {qXq ( 8'(1) )I}""· 
E~.<q) 8' ( 1) exp 2lx1 T ,:Y 1 for f.L > 0, 

E(q) ( 41' )qxq/2x, {qx -(~t+!) 2 } 
--= --- exp -q ~ ---- ~ 1 foru < 0. 
E~.(q) 8'(1) Xt - 2k-1 ' 

k-O (3.13) 

For l =- 1/2, the fields are determined by the ex­
pression 

!I 

f.O 

FIG. 1 

( 4 ) qxq/2x, [ (8' ( 1) /T) •;, _ 1 ]qxq/2x, 
E<ql = R (!,<ql 

qO . 8'(1)/T-1 I (8'(1)/T)'i•+ 1 

[ (8'(1)/T)''•-1 ( 2w )l-1 

X 1 - ( 8 , ( 1) / T'l, + 1 exp - ~ x1z _ 

X exp [- ~~ z ( inq + x1 ) z 1. (3.14) 

In order to obtain a representation of the be­
havior of the field in the medium for arbitrary 
fields incident from a vacuum, the graphical de­
pendence of y(z) = E 1(z)/E 10 on wK 1z/c was con­
structed for the values a= ( 6'(1)- T)/T equal to 
100, 10, 1 for l = ± 1/2 for q = 1. It is seen on the 
graphs that for l = 1/2 (Fig. 1) the penetration 
depth for a > 1 is much larger than in the linear 
theory while for l =- 1/2 (Fig. 2) it is much less. 

We note that the expressions for the fields ob­
tained with the help of the kinetic theory for 
l =- 1/2, w H = 0, q = 1 are qualitatively identical 
with the results of elementary theory (compare, 
for example, Eq. (3.13) with Eq. (16) of the work 
of Gurevich [ s]). It has already been shown there 
that upon passage of a strong electromagnetic 
field through a layer of completely ionized plasma, 
the penetration depth can be appreciably greater 
than in the linear theory, which is also in agree­
ment with the results of a kinetic consideration. 

The dependence on the frequency and on the 
magnetic field for the effects under consideration 
is determined by the value of Mq. The general 
case can only be studied graphically. Here we 
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FIG. 2 

limit ourselves to the longitudinal propagation of 
strong electric fields, q = 1, and we shall also con­
sider that w, w H « w 0 and w H > w. Under these 
assumptions, the relative change in the penetration 
depth is proportional to ((wH- w)/w)Z/(r +Z). We 
shall not linger here on the case wT « 1. We note 
only that for longitudinal propagation, the results 
obtained are valid only for the single limitation 
lw- WHIT « 1 and, consequently, are applicable 
also for WT « 1 if WHT » 1. 

4. NONLINEAR RESONANCE EFFECTS 

It is seen from Eqs. (2.1) that the coefficients 
Aq. Bq, and Gq in Eqs. (2.1) increase strongly for 
certain values of the frequency of the electromag­
netic field, while their imaginary part remains 
much larger than the real. This leads to a sharp 
increase in the dissipation of the electromagnetic 
field. This phenomenon is known as resonance and 
has been studied thoroughly in linear theory. In the 
present section, we shall consider nonlinear reso­
nance effects. 

We assume that a monochromatic wave is propa­
gated in the medium with resonance frequency w. 
We first consider the case in which the inequalities 
lw-wHIT» 1 are satisfied. It follows from Eqs. 
(2.1) that the resonance increase of Aq, Bq, and Gq 
takes place if the real part of the denominator of 
these quantities vanishes: 

(4.1) 

Substituting the real parts E~ 1 and E;3 from Eqs. 
(2.3) in (4.1), we get an expression for the reso­
nance frequencies: 

ul1.22 = 1/2(wo2 + WH2) + [ 1/4(wo2 + WH2)2 -- wo2wH2 cos2 tt]'i'. 
(4.2) 

This is the ordinary expression for the frequencies 
of magnetoplasma resonance. [iJ Since we have 
assumed w ¢ w H· then longitudinal propagation of 
electromagnetic waves ( J = 0) drops out of con­
sideration. This case will be investigated separ­
ately below. 

We write down the set of Maxwell equations for 
the resonance electromagnetic field. It follows 
from the third equation of (2.1) that Ez is w/v 
times larger than Ex or Ey. Keeping the principal 
term in w/v in u2 in Eq. (2.2), and considering the 
field to be strong, we get the expression (3.2) for 
cp(v 2), in which it is necessary to set 

~0- = ( 4 (r + l) I Eoz [2 e2T r(r+l) 

T 3AoTomW(w) . ' 

(4.3) 

With account of (2.4) and (4.1), the Maxwell equa­
tions are written as follows: 

d2E w2 ( eo )l 
dzZx- i c2 [aEx + ibEy] 'ljJ1-1 (r, l) -T v2l/(r+lJ = 0, 

i sin t1 { 11 
E, = . 2 11 2 , ie12 Ex 

sm 'l'h~11 + cos 'freaa 

• (eo \ 1 
+cos t't(ea31 - e111 )Ey} 'IJJ1-1 (r, l) T 1 v2ll<r+lJ. 

where 

sin2 'fre1z"2 
a = - -----------

sin2 t'te1111 + cos2 it·eaa11 

I I eu e33 
g = --,----cc---· 

sin2 t'teu" + cos2 t'teaa11 • 

(4.4) 

(4.5) 

We note that in the resonance case the nonlinearity 
of the Maxwell equations is nowhere small. 

It is convenient to solve the nonlinear system 
(4.4) if one transforms to normal waves. Were­
place Ex and Ey in (4.4) by the linear combination 
F 1, 2 =Ex- k 1, 2Ey· If we define k 1, 2 by the formulas 

i ra-g ( (a-g)2 \'/,l 
k1,z=ziJL-2-+ --4--+bz.l _' (4.6) 

then the set (4.4) reduces to the following form: 

d'' F z ( e )z ~z: ,2- i ~2 n~. 2'\jJI-1 (r, l) To v2lf(r+lJFI, 2 = 0, 

(4. 7) 
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where 

2 1 [ 1 l'/, nu = 2 (a+ g) ± 4_ (a- g)2 + b2 ~ , 

sin ftb [iE12k1, 2 + cos ft ( Eaa'- Eu')] 
V1, 2 = + · (4 8) 

(sin2'1'tE11" + cos2ftEaa") {(a- g)2 + 4b2]'i2 · 

It follows from Eq. (4.8) that ni, 2• k 1, 2 and Y1, 2 do 
not depend on the electric field. 

Equations (4. 7) go over to the equation of linear 
theory for l = 0. It follows from this fact that the 
n 1, 2 are indices of refraction in the linear theory 
if the field in the linear theory is sought in the 
form exp(i312wn1, 2z/c). 

It was shown above that it is impossible in the 
nonlinear theory to consider simultaneous propa­
gation of both normal waves because their super­
position is not a solution. For example, let us in­
vestigate the propagation of the first wave by sett­
ing F 2 = 0. It follows from F 2 = 0 that 

(4.9) 

Thus the k 2, 1 are polarization coefficients for the 
first and second waves, respectively. It is seen 
from (4.8) that the polarization coefficients in the 
nonlinear theory are described by the same rela­
tions as in the linear. 

In the set of equations (4.7) we put F 2 = 0 an0 
using the second of the equations of the system, 
eliminate v from the first equation. Finally, we 
have for the determination of F 1 the formula Sl 

d2F ro2 ( Eo )z I F '2l/(r-l) 
--i- n2'1jJ 1- 1 (r,l) - - -- F=O, (4.10) 
dz2 c2 T • F0' 

where F~ = F(-O). We shall seek a solution of (4.10) 
in the form 

FIFo'= (1 + roxz I c)-<a+i~l. (4.11) 

Substituting (4.11) in (4.10), we get 

x2(a + i~) (a+ i~ + 1) (1 + roxz I c)-2 

- in2'1jl1-l (r, l) (Eo IT) 1 ( 1 + roxz I c) -a2ll (r-l) = 0. 

To satisfy this equation, it is necessary that the 
following conditions hold: 

l 
a = 1, 

(r-l) 

By equating the real and imagi.1ary parts in the 
second of Eq. (4.12) separately, we get three equa­
tions for the determination of the three unknowns 

S)The index 1 will be omitted below. 

a, {3, and K , whose solutions have the following 
form: 

r-l 
a=-z-· 

1 
~ = T[r(r-l)]'lz; 

l(Eo/T) 1n 
X=-------'---'-----,-,-~--,---

[ (2r -l) (r(r -l)) '/,]'!., '$1 (r, l) 
(4.13) 

We note that the set (4.12) is in a definite sense 
equivalent to the dispersion equation of linear 
theory. 

By virtue of the inequalities (3.4), {3 is an im­
aginary quantity; the sign in front of the square 
roots in Eq. ( 4 .13) is so chosen that K is larger 
than zero. 

The value of Ez is easily determined from the 
second equation of the set (4. 7): 

Eo I E'oz = {1 + roxz I c)a-2-i~, (4.14) 

whence it is seen that E z falls off with increase of 
z more rapidly than F, that is, the larger the value 
of z, the closer the wave is to transverse: 

We proceed to the solution of the boundary prob­
lem. Let the wave 

F(z) = Fo(e-irozfc + Peiroz/e), (4.15) 

be incident from the vacuum (z < 0) on the half­
space z > 0, which is filled with semiconductor or 
plasma; here P is the reflection coefficient. F(z) 
satisfies on the interface z = 0 the following condi­
tions by virtue of (2.11): 

F(O} = F(-0), oF(O) 1 az = oF(-0) 1 oz. (4.16) 

We must still determine the reflection coefficient 
P and the index of refraction R = F (-O)/F0, which 
is connected with the impedance t by the relation 
R = 2t. 

It is necessary to keep in mind that Eoz• which 
enters into E 0, must be expressed in terms of F 0• 

This can be done if one sets z = 0 in the second of 
the equations of the set (4. 7) and assumes that 

F(-0) =2lfo. 

Substituting F from (4.11) and (4.15) in the 
boundary condition (4.16), we get a set of two equa­
tions for the determination of P and t; this set is 
easily solved if we assume that ltl « 1. The small­
ness of It I follows from the fact that the penetra­
tion depth in the resonance case is small in com­
parison with the wavelength in the vacuum, while I tl 
is of the order of their ratio. Finally, we get 

p = 1 + 2~, ( 4. 1 7) 

( l roz )-(•·-l)Jl-i[r(r-l)l'Ml 

F(z) = 2ifo. 1 + [(2r-l~-l)]'lz cl~l ' 
(4.18) 
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E.(z) = 2il~lbFo [-~]''• 
1~12n2 r -l 

( l . WZ )-(r+l)/1-i[r(r-l))'t./l 4 
X 1+[(2r-l)(2-l)]'l•cl~l , ,( ·19) 

( 
r )(r-l)/~r 

~ = 2-l/r r"'' (r, znr+l)/2, __ I v 1-l/r n-<r-1)/r 
r-l · 

[ 4(r+l)e2TjF0 [2]-l/2r {· [r-l]'l'} 
X · · exp 'arctg -- . 

3mW(w)Ao-ro . r (4.20)* 

We write out the equation for the mean energy: 

e T- 22/r f r [ ( 5 ) I ( 3 )]( r )
1/2r 

/ - 2(r+l) 2(r+l) r-l 

X [¢1 (r, l) J-1/r IV j2/r n-2/r [ 4 (r + l) e2T I Fo)2 ]1/r 
3mW(w)A0-r0 

( l wz )-2/l 
X i+[(2r-l)(r-l)]'i• cj~l- · 

(4.21) 

These results are suitable both for the first and the 
second waves. 

We shall discuss the results at the end of this 
section, but now we shall consider the case of a 
transverse propagation of the wave ( J. = 1r /2). For 
transverse propagation, the wave with index 2 is 
nonresonant; therefore, we limit ourselves to the 
consideration of a wave with index 1. The expres­
sion for the impedance for a transverse propagation 
has the following form: 

~= -r2 (-r_1(r-l)/4r [r( 5 _ 2z) I r( 25 )J(r+l)/2r 
21/r r -zl . 2 . 

X [¢1(r,l)](r+l)/2r 1 +-o- __ o ( w 2 )'/, (' w )1/2>' 
2WH2 WH 

X ( 1 + Wo: )(r-l)/r [ 4(r + l)e2TIF0 j2 ]-l/2r 

WH • 3mAo-ro 

{ [ r-l]'/'} 
X exp iaretg -r-. . (4.22) 

For €/T, the following equation is obtained: 

e/T-22/r[r( 5 )jrf 3 )l 
- 2(r+l) \2(r+l) J 

[ ( 5 ) / . ( 5 - 2l ) ]1/r ( r )2/r xr-- 1 .r-- --
2 2 r-l 

( 
WH2 )1/2r [ 4(r + l) e2T I Fo j2 ]1/r 

X [¢1(r,l)]-1/r 1 +-
Wo2 3mAowo 

[ l cwl: -~-]-2/l 
X 1 + [(2r-l)(r-l)]'/, ., 

(4.23) 

*arctg- tan-• 

We proceed to the case of a purely longitudinal 
propagation J. = 0. The following expression is ob­
tained from (1.9) for the symmetric part of the 
propagation function: 

{ 3mAoer-l } I (e) = C ex;p - · 
4(r-l)e2T-r0 IEol 2v2 ' 

1Eol 2 =lEo 12 +lEo 12 v2 = 1Exl 2 + 1Eyl 2 (4.24) 
x Y ' IEoxl 2 + IEoyl 2 • 

For longitudinal propagation, it is also convenient 
to introduce the normal F 1, 2 =Ex± iEy. The nor­
mal wave F 1 is resonant (the index 1 for the reso­
nant harmonic is omitted in what follows). Setting 
J. = 0 and w = WH in (2.1) we obtain the following 
relation for F: 

d2F w~ ( (eo')! I F 121/(r-l)\ - +- 1- i'I!J2 (r, l) - '11 2 -F· 1F = 0, 
dz2 c2 T I o . 

( 3) (3+2l)/'(3+2l) ( 3 l 
¢2(r, l) = r. 2 r 2(r-T). I _r -2- r 2(r-l)!' 

'112 = wo2-r0 r ( 5 + 2l ) j r ( ~- ) , 
WH • 2 I 2 

eo'= ( 2(r-l)e2T-roiFol2 )1/(r-1). 
T 3mAo 

(4.25) 

The resonance is most sharply pronounced if one 
can neglect unity in the Eq. (4.25). Physically, this 
corresponds to a smallness of the displacement 
current in comparison with the conduction current. 
After neglect 'of unity, Eq. (4.25) is identical, apart 
from sign with Eq. (4.10), in which connection the 
field is determined by Eq. (4.18) with impedance t 
which has the following form: 

~ = ( r r l J (r-Z)/4"[ r ( ~ ) I r ( 5 -; 2l ) J (r-!J/2r 

X' [ ¢ 2 (r, l)]-<r-l)/2r ~ _!!_ ( w )l/2r( w )'/, 
WH Wo21'o 

( 2(r-l)e2T 1 Fo 12 )-!/2r {· [r-.q't'} 
X A exp ~arctg --·\ .(4.26) 

3m oWo _ r _ 

For the average value of the energy, we have 

(
. WH \'lr( 2(r -l)e2T I F0 12 \'/r 

X [¢2(r, l)]-'!r - ) -- ) 
w , 3mAowo . 

[ l wz ]-2/l 
X 1 +[(2r-l)(r-l)]'"cj~j · 

(4.27) 

It can be shown that for WH = 0 and WT « 1, the 
same formulas hold for the field and impedance if 
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one introduces the following transformation in 
them: F- Ex, I F 0 12 = 21 Exol 2 (1 +I Kl 2 ), where 
K = Ey/Ex is the coefficient of polarization. 

We proceed to a discussion of the results. In 
finding the distribution function in the kinetic equa­
tion, spatial derivatives have been neglected. For 
this neglect to be valid the condition 6 » L (AE/ Er1 
must be satisfied (see [ 1]), where 6 is the distance 
over which the field changes appreciably and L is 
the mean free path. As is seen from the formula 
for the resonance harmonic, in the case of a strong 
nonlinearity of (4.21), 6 ~ cl tl /w. There then 
follows the inequality for the impedance I t I 
» wL(AE/E);c, which limits the region of appli­
cability of the theory. On the other hand, it follows 
from the condition of resonance that I t I « 1. Thus 
the values of the impedance are limited by the 
conditions of applicability of the theory both above 
and below. 

nonlinear theory in the nonresonant case and in the 
nonlinear theory for the case of resonance. In the 
linear theory, the field is exponentially damped 
with increasing z, while the phase is a linear func­
tion of the coordinate so that the phase velocity 
does not depend on the time. In nonlinear theory, 
in the absence of resonance, the phase also depends 
linearly on the coordinate but the field falls off ac­
cording to a power law. In the presence of reso­
nance in the nonlinear theory the field falls off 
with increase in the coordinate according to a power 
law and the phase cp varies like 

(r-l)'h ( wz ) 
Ql = wt- l ln 1 + -~-~ , 

' c ~ ' 
(4.27b) 

so that the phase velocity is 

dz l { l } 
Vljl = dt = (r-l)'f, c I~ I exp (r-l)'f, wt · 

We have in fact made use above of the condition 
E (0)/T » 1. This in turn imposes the following con- The author thanks M. I. Kaganov and M. Ya. 

Azbel' for discussions. dition on the incident field (see (4.23)): 

I Fo I~ (mAoooo/ e2T)'''· 

We consider the penetration of the field inside 
the specimen. The penetration depth 
6 ~ 6({(0)/T)l/2, where 60 is the penetration depth 
in linear th~ory. For l < 0, we have 6 « 60, for 
l > 0 we have 6 » 60. This situation is the reverse 
of that which is obtained in the high frequency non­
resonant case (Sec. 3). Similarly to what was done 
in the previous section, one can show that for 
l > 0, the "hot electrons" are contained in the 
layer of thickness 61 » 60; for l < 0, one gets 
61 « 60. The penetration depth is 6 ~ I t 1-1 

~IFoll/r. 
It is of interest to compare the dependence of 

the field on the coordinates in the linear theory, the 
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