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We calculate the probabilities of the relative positions of two particles in a fully ionized 
Boltzmann plasma with allowance for the quantum effects. These probabilities permit, for 
example, a very simple determination of the thermodynamic potential of such a plasma, 
which was previously calculated by Vedenov and Larkin [1] with the aid of a diagram tech­
nique. Besides, we determine for this case of an equilibrium plasma explicit momentum­
and coordinate -dependent quantum two -particle distribution functions which, as is well 
known, are the direct quantum analogs of the corresponding classical functions. 

INTRODUCTION 

IN the present paper we consider quantum effects 
in an equilibrium plasma, in which two inequalities 
are assumed satisfied: n.\3 « 1 (absence of degen­
eracy) and e 2 /hv « 1 (Born approximation). Under 
these conditions the plasma can be assumed to be 
fully ionized, and the momentum distributions of the 
particles are close to Maxwellian, so that an essen­
tially classical analysis can be employed. 

It is known, however, that a purely classical de­
scription of the plasma entails difficulties. For ex­
ample, the classical statistical integral diverges as 
a result of the non-integrable singularity possessed 
by factors of the type w( r 12 ) = exp (- e1ed ®r12). 
The quantity w(r12 ) can be regarded as the prob­
ability of mutual position of two charges e 1 and e 2 
with distance r 12 = r 1 -r2 between them (for a 
more precise definition see Sec. 1 ), and when e1e 2 

< 0 we have w(r12 )- co as r 12 - 0, meaning that 
it is ''thermodynamically convenient'' for two unlike 
charges to join together. Without introducing arti­
ficial models with repulsive small-radius forces, 
the situation can be improved by taking quantum ef­
fects into account, and this is the purpose of the 
present article. 

When the quantum corrections are taken into ac­
count, the probability of the relative position of two 
particles in the plasma can be written in the form 
w(r) = Wcl(r) + vq(r); by virtue of the uncertainty 
relations, the above-mentioned singularities should 
not arise and should not cause the joining of the two 
unlike charges. The quantity uq(r ), which can be 
called a ''quantum correlation function,'' is calcu­
lated in Sec. 1 below. We make use of the fact that 
the quantum nature of the particles can come into 
play only at distances on the order of the electronic 
wavelength, A. "' h/mv, which under our conditions 

is much smaller than the Debye radius. At this dis­
distance ( r « d ) the interaction between these two 
charges is not distorted by the Debye screening, so 
that the quantity vq ( r) can be determined relatively 
simply by using the well known solution of the pure 
two-body Coulomb problem. 

Insofar as the authors know, the probabilities of 
mutual positions of particles in a plasma were never 
calculated before with account of quantum effects. 
Yet it is quite simple, for example, to calculate with 
their aid the thermodynamic potential of the plasma 
(see Sec. 2 ), which was obtained for these condi­
tions by Vedenov and Larkin [1 J by a diagram tech­
nique (it must be noted that some numerical coeffi­
cients of Vedenov and Larkin are in error). 

1. PROBABILITY OF MUTUAL POSITION OF TWO 
PARTICLES IN A PLASMA 

In a homogeneous isotropic plasma, this 
probability can always be represented in the form 

dr1 dr2 
dW1z=w(r12)VV' r12=Jr1-r2J, (1.1) 

where V is the volume. As is well known [3•4] in 
classical theory w ( r ) is described by 

(1.2) 

where ® = kT is the temperature and d the Debye 
radius. Even if the last exponential form is used, 
we find for unlike charges (e1e 2 < 0) that w(r)- co 

as r- 0, corresponding to joining of the charges. 
We must expect this joining not to occur if the 

quantum effects are taken into account, since the 
uncertainty relation prevents the charges from 
coming together. In this case the quantity w(r) 
can obviously be represented in the form 

w(r) = wc~(r) + Vq.(r), (1.3) 

866 
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and the correction term vq ( r ) , which takes into 
account the particle quantum correlation effects, 
should compensate for the divergence of the clas­
sical probability as r - 0. 

To determine v q ( r ) we make use of the fact 
that the quantum nature of the particles can be 
manifest only at distances on the order of the 
de Broglie wavelength A. ~ h/mv. We shall assume 
that the latter is much smaller than the Debye ra­
dius. For such distances ( r ~ A. « d) we can leave 
out from the classical formula (1.2) the screening 
factor exp ( -rId). This means a purely Coulomb 
interaction between the two particles in question 
when r « d, i.e., we can disregard the influence 
of the remaining charges of the system. Then, in 
accordance with quantum statistics, w ( r ) should 
be determined by the diagonal elements of the den­
sity matrix 

w(r!2)r«d=const·L:exp(-En/8) J'¥n(r1,r2)J 2, (1.4) 
n 

and, taking the foregoing into account, we must 
choose for 'lin (rio r 2 ) the eigenfunctions of the two­
body problem with Coulomb interaction. 

Separating the motion of the center of mass 
(plane wave) and integrating in (1.4) over the total 
momentum, we obtain 

w (r)r...--;;;d = const · L exp (- Bk rel / 8) J'l\'k(r) J
2 , (1.5) 

k 

where 1/Jk ( r ) describes the motion of particles with 
reduced mass in the field of the stationary Coulomb 
center, and 1/J~el -energy of this relative motion. 
These functions are well known [5], and for the con­
tinuous spectrum they take the form 

'1\'k (r) = (2n(1• e 12k r (1 + ijk) eikp F (- ijk, 1, i (kp-kp)). 

(1.6) 

Here 

k = h(v1- v2) / e1e2, p= [W1e2(r1- r2)h-2 

and F -confluent hypergeometric function. The 
functions (1.6) are normalized by the condition 

~ \jlk*(r)'l\'k' (r)dr = 6(k- k'). 

We assume that the Born approximation condi­
tion e 2/hv « 1 is satisfied. We can then neglect in 
(1.5) the bound states (for like charges there are 
no such states at all) and, assuming that in (1.6) 
k is large and kp is arbitrary, and confining our­
selves to the first term in the expansion in 1/k, 
we obtain, as can be readily verified, 

'I' (r) = ~ {1- _1:_ [_::_ + iC + i ~ -~s ( ei(np- kp);- 1) J.} 
~< (2n)'f, k 2 0 s 

(1. 7) 

(the Euler constant C is a result of the expansion 
r(1 + i/k) == 1- iC/k + ..• ). Formula (1.5) then 
takes the form 

w(r) =const· \ dke-xk' 
r~d J 

{ ;t 2rds ·} X 1---+ .l---sin[(kp-kp')S] 
k k ·0 s 

(1.8) 

where K == J.W~eU2®h2 • The integrals contained 
here can be readily calculated and we ultimately 
get 

(1.9) 

where vT == (2®/JA )112, and A.== hJAVT· The constant 
in (1.8) is chosen such as to make formula (1.9) as­
sume the classical form for r » A.. 

It is obvious that the last term in (1.9) is indeed 
the quantum correction term of (1.3). Since this 
term is exponentially small for r »A., the Debye 
screening does not influence it. Thus, we can 
ultimately write 

(1.10) 

where 

+ __!:_ exp ( - r 2 
) l 

r "Jfn '}} J (1.11) 

( <P ( x) -error function). It is easy to verify that 
as r- 0 the quantum term in (1.10) actually can­
cels out the divergence of the classical term, and 
in particular 

(1.12) 

If the particles in question are identical ( elec­
trons ), then (1.10) must be supplemented by a term 
that takes the exchange effects into account. In 
this case the functions '1'n(r1,r2 ) which are con­
tained in (1.4) should have a suitable symmetry, 
and in particular they should be antisymmetrical 
for electrons. When summing over the spin vari­
abies, it is necessary to take the antisymmetrical 
triplet and symmetrical singlet, so that we have in 
(1.5) in lieu of II/Jk(r)J 2 

3J'I\'k(r) -'I'd- r) 12 +I '1\'k(r) + '1\'d-r) j
2 

1 { n 2 \~ d£ . 
=(2n)a 1--T+TJT~nn[(kp-kp)sl 

() 

e2ik9 [ n 2 ~ d£ . _ J } - -y- 1- k + k ~ T e-tkp~ siu kp£ . 
u 

(1.13) 
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The first three terms coincide here with the inte­
grand in (1.8) and consequently yield the already 
mentioned quantum correction vq ( r ) , while the 
terms with exp ( 2ik • p ) yield the exchange correc­
tions. 

It is easy to verify that after integration with 
respect to k the final result can be represented 
in the form 

e1e2 
w(r)= 1- er e-r/d+vq (r)+vq ex (r). (1.14) 

Here 

Vq ex (r) = __ _;_(-~)%\dke·xk'+zikp 
2 :rt . 

(1.15) 

The first term describes the exchange correlation 
in an ideal gas, and the second the exchange cor­
rections that take the interaction into account. For 
r »A. these terms are exponentially small, and as 
r- 0 both remain finite. 

2. THERMODYNAMIC POTENTIAL OF THE 
PLASMA 

Using the obtained probabilities, we can readily 
calculate the thermodynamic potential of the 
plasma. For our conditions (n/1.3 « 1, e 2/hv « 1) 
the latter was determined earlier by Vedenov and 
Larkin[1J, who used a diagram technique. Their 
result can be represented in the form 

[ :rt"h ez 
Q = Q + ~Q + ne -.:::n'A3 - 4n--n).3 

B D V2 hve 

+ Sd 'A l':rt- ( z + y2In 2 + ~~) 
d 4 (z + 1) 2l'2 

+ -~(iz"ln-1 - +In~- 2z2 ln-~l]. 
12(z + 1) z2sd /. I.! 

(2.1) 

Here QB -Boltzmann potential of a classical ideal 
gas; 6Qo = -%n®(z+1nd -ordinary Debye cor­
rection; d = [ ®/ 4me2 ( z + 1 ) ]112 -De bye radius 
(account of quasineutrality gives zni = ne = n); 
~d = e2/®d -small parameter, and Ve = (2®/me )112 

and A.= h/meve. The calculation that follows, 
made with the aid of the probabilities obtained in 
Sec. 1, leads to an expression similar to (2.1) for 
n, but the numerical coefficients in some of the 
terms are different. 

To determine Q we made use of the well known 
formula 

• 
1 " de2 

Q = Qict + -V ~<Hint) 2 . 
o e 

(2.2) 

Here S"lid = Q B + n®rr3f2 nil. s /fi -potential of ideal 
electron -ion gas with account of the correction 
term, corresponding to the weak electron degener­
acy (see [G]). The ions are regarded classically. 
Averaging the interaction Hamiltonian 

(2.3) 

with the aid of the probabilities obtained in Sec. 1 
we have, with account of the quasineutrality, 

1 n2e2 1 dr 
V <Hint)= - 2- r;:- [w;; (r) + Wee(r)- 2Wei (r) ]. (2.4) 

For the probability involved here we get 

(z + 1)2e2 . 
w · · + w - 2ru · = - e-nd n ee q E>r 

(2.5) 

It is easy to verify that the first term leads to 
the usual Debye correction, so that (2.2) can be 
represented in the form 

:rt"h 
Q = Q + n8-_c_-n'A3 + ~Q 

B y2 D 

1 

nz f I dr ex + ·.) de2 j -[Vee(r) +Vee 
2 0 r 

(r)- 2Vei (r) ]. (2. 6) 

The second term can be called the pure exchange 
correction (it does not depend on the charge), 
while the last term contains the quantum effects 
considered in the present article. Using formula 
(1.11) for the quantities Vee and Vei and formula 
(1.15) for v~g, and also taking into account the fact 
that in the case of electron -electron interaction it 
is necessary to use a reduced mass 11 = me /2, 
whereas in the case of an electron ion interaction 
(mi »me) we can simply put 11 =me, we get 

\ dr e2 ~ ~ exp(- t2) e2h --Vee= 8:rt-- dr·r dt = n"h _____ _ 
• r hvee 0 r/lcee t2 ln •;, 8;/, , 

l'2 m'h8;/, 

and finally 

(2. 7) 

= - 4n'J..ei r dx. X [ _e_-x_' + -. _ez_1 dt _e-_t_' __ e-_x_2l 
u 2 hvee x t 2 - X2 J 

h2 [ e2llt'l2 - l 
=-:rt- 1---, l":rtln2 . me h81z (2.8) 
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Integrating in (2.6) over the charge, we get ulti­
mately 

[ 
n'J, 

Q = Q + L'lQ + ne - = n)-,.3 
B D 12 

e2 3 /.., -y;:t ( z 1 + ln 2 )] 
-2n hve n/..,+~ddt:(z+i) 2+ 212 0 (2.9) 

The numerical coefficients of three terms in 
this result differ from those of expression (2.1) 
derived of Vedenov and Larkin [1], who let some 
inaccuracies creep into the calculation and who 
mistakenly used in some cases the density of the 
electrons with a single spin direction in lieu of the 
total electron density. The last term in formula 
(2 .1) of [1], which contains logarithms and is pro­
portional to ~a. cannot be derived from our prob­
abilities, which are accurate only to ~d· However, 
since the Planck constant is encountered in the last 
term only under the logarithm sign, this term is 
essentially classical and can be obtained from the 
following considerations. 

We write down the classical probability (more 
accurately, the probability density) of the mutual 
positions of two particles in the form 

e1e2 , 
Wcl = 1---e-r/d +vet, er 

(2.10) 

where v~l are quantities on the order of ~a. Then 
the indicated last term should, in accordance with 
(2.6), be equal to 

•• 
L'lQ = -~ I de2 I dr [v'o 0 + v'"- 2v' . 10 

~2 2 J .) r tt ee · et (2.11) 

The quantities v~l can be determined by using the 
fact that when r « d the interaction of two par­
ticles in question should not be distorted by the 
presence of the remaining charges and must have 
a pure Boltzmann form 

(2.12) 

If we add to the exponential here the Debye screen­
ing factor exp ( -r/d), then (2.12) will coincide 
with (2.10) accurate to terms in first order in ~d· 

Thus we can state that, accurate to second -order 
terms in ~d. the probability can be represented in 
the form (see C4•7J) 

(2.13) 

and as r- 0 the function cp (r) should have sin­
gularities that are only weaker than singularities 
of the r-2 type. Only then can formula (2.13) go 
over into the Boltzmann distribution (2.12) as 
r-- 0. Comparing (2.13) with (2.10) we get 

(2.14) 

Substituting these values of V~l in (2.11), we 
see that the first term, which is proportional to 
r-2, leads to integrals that diverge logarithmically 
as r-- 0, whereas the terms with functions cp (r) 
that contain no singularities of the type r - 2 will be 
finite. Confining ourselves to logarithmic accuracy, 
the latter can be disregarded and we obtain 

1 dr , , , 
J -;:-(vii +Vee- 2Vei ) 

e4 ( d dr d dr d dr ) 
=2n- z4 I -+I --2z2 \- • ez J r J r J r 

ii 
rmin 

(2.15) 

Here rmin must be chosen differently in different 
cases. The ion-ion interaction (classical) is cut 
off at the minimal approach distance rNiin ~ z 2e 2 I®, 
whereas the electron-ion interaction [as follows 
from the quantum probability (1.9)] is cut off at an 
electron wavelength A., and the electron-electron 
interaction-at a reduced wavelength A.ee == f2 A.. 

Taking these remarks into account, we can write 
down for the expression (2.15), with logarithmic ac­
curacy, 

2n.::_( z!.Jn - 1- + ln ~ - 2z2 ln ~-) . 
E)2 z2~d ')... ')... 

(2.16) 

Further, integrating over the charge in accordance 
with formula (2.11), we obtain the last term of 
Vedenov and Larkin's formula (2.1) . 

3. QUANTUM TWO-PARTICLE DISTRIBUTION 
FUNCTIONS 

In addition to the probability of the mutual posi­
tions of two particles, some interest attaches also 
to the total quantum two -particle distribution func­
tion. In the classical analysis such a function de­
scribes the probability of the distribution of two 
particles over the momenta and coordinates. In 
the quantum approach, the uncertainty relation 
does not allow us to introduce this probability, and 
the system is customarily described by a density 
matrix p ( q, q' ) (in the coordinate representation). 
However, a more intuitive description, close to the 
classical one, is obtained by using the density mat­
rices in the ''Wigner representation'': 

I -iP~ ( h't h't ) 
FNq (p, q) = (2n)-3N J e PN q- 2 , q + 2 dN't, 

(3.1) 

which are customarily called "quantum N -particle 
distribution functions" [2]. Although such a func­
tion does not have the meaning of a probability (it 
can be shown that FN is real but can have an alter-
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nating sign), we can define with the aid of F~ the 
momentum probabilities and the coordinate proba­
bilities, when taken separately, and also the mean 
values, by means of formulas analogous to the clas­
sical ones: 

w(p) = ~ F(p, q)dq, w(q) = ~'F(p, q)dp, 

A(p, q)= ~ A(p, q)F(p, q)dpdq. (3.2) 

Furthermore, the function F~ ( p, q ) goes over into 
the classical distribution function in the limit as 
h- 0. Therefore the functions (3.1) can be re­
garded as direct quantum analogs of classical 
N -particle distribution functions. 

In the case of a plasma, an equation with account 
of the polarization of the medium was derived for 
the quantum two -particle distribution function, by 
Klimontovich and Temko [S,s], and a solution of this 
equation, suitable for arbitrary single -particle dis­
tribution functions f(p ), was obtained by Silin [iO]. 

We shall use this general solution to obtain an ex­
plicit expression for the two-particle function in 
our case of a Maxwellian distribution f(p ). It must 
be borne in mind here that neither the Klimonto­
vich-Temko equation nor the Silin solution take 
into account exchange effects, which we have seen 
to be significant at distances on the order of A.. 
Therefore the expression obtained below is valid 
only if the two particles in question are not identi­
cal. 

Leaving out the complicated derivations, we pre­
sent the result of substituting the Maxwellian dis­
tributions f(p) in Silin's general solution. If we 
represent F~(p, q) in the form 

Fzq (r1, P1; r2, P2) 

(3.3) 

we can obtain for the spatial Fourier component of 
the function ta{3 ( r, p1, p2 ) from SHin's solution, in 
the case of Maxwellian distributions fa ( p ) , 

A ( ) Aafl exp (- k2 Aaf12 /4) { shxachxfl 
~a., Ph P2 = - ---::-:-'-------'--

1< rr.2k 2 (xa- Xfl) e~t+(kv2) 

We put here 
VT = (28 I !l) 'I• (~t = mamfl I (ma + m11) 

(reduced mass ) and, in addition, 

ShXfiChXa 
81<- (k:vi) 

(3.4) * 

Aafl = hI !!VT, Xa = hkv112E>, Xfl = hkv2 I 2E>; 

*sh =sinh, ch =cosh. 

The expressions E"~(w) are respectively the 
upper or lower limits on the real w axis for the 
function 

8~t(oo) = 1 + (2rr.il h}[F+(k, oo)- F_(k, oo)], (3.5) 

which can be regarded as the quantum dielectric 
constant of a multi-species plasma. Here 

1 4rr.naea2 r dp ( hk ) 
F±(k, oo) 2rr.i ~ -k-2- J\J)-kp/mJa P ± 2 . (3.6) 

a 

The functions E"k ( w ) and F ± ( k, w ) themselves are 
analytic on the entire complex plane w, with the 
exception of the real axis, on which their disconti­
nuities are equal to, in accordance with (3.5) and 
(3.6), 

de~t(oo) =e~t+(oo)- e~t-(oo) 

= (2rr.i/h) [.1\F+(k, oo)- .1\F-(k, oo)], 

.1\F±(k, oo)=F±+(k, oo) -F±-(k, oo) 

~ 4rr.naea2 r ( kp ) ( hk ) = -ILJ k 2 J ll 00 ---;;;: /a p + - 2- dp. 
a (3. 7) 

Finally, the function Si{(w) in (3.4) is deter­
mined by the integral 

S~t-(oo) =~ S doo' .1\F+(k, w') + .1\F_(k, oo') 
h oo'-(oo-iv) e~t+(oo')e~<-(oo') 

(v-++0), (3.8) 

the evaluation of which for the concrete case of a 
Maxwellian distribution is precisely our problem. 

Using (3. 7), we can easily verify that the follow­
ing relation holds true for a Maxwellian distribution 

h hoo 
.1\F+ + .1\F_=-2rr.ide~t,cth 28 , (3.9)* 

and therefore the integral (3.8) can be reduced to 

sh-oo)=_!__(" 1Cth (hoo'/28)doo' _ _!__(" Cth (hoo'/28)doo' 
( 2rr.iJ e~t+(oo')(oo'-oo) 2rr.iJ e~t-(w')(oo'-oo)' 

(3.10) 

where the integration contour circles the poles w' 
= w and w' = 0 from above. Using further the 
known expansion of coth x into partial fractions 

cthx= 1 +~( 1. + 1. ) (3.11) 
x n=i x + mn x- ~rr.n 

and closing the integration contours by means of a 
semicircle of large radius of the regions of ana­
lyticity of the functions E" + and E"- from above in 
the first integral and from below in the second, 
we obtain 

*cth = coth. 
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00 1 

- ~~ [ e,. -(-inn 28lh) (hwl28 +inn) 

+ e,.+(inn 28/h: (hw/28- inn) J. (3.12) 

We then get ultimately from (3.4) 

aa _ A.aa ( k2t.!a ) { 1 
~,. (Pb P2) - - ---;?ik2 exp - 4- sh Xash xa Xaxae,. (0) 

00 1 

+ n~Je,. -:-(-inn 28lh) (:.Ca.+ inn) (xa +inn) 

+ e,.+(inn 28lh) (x~- inn) (xa- inn) ]}. 
(3.13) 

In the case of practical interest when A. « d, 
this formula can be simplified. In fact, the denom­
inators of the terms of the sum in (3.13) contain the 
functions E~ ( ± i1Tll2® /h). Their arguments w 
= ±i1Tll2®/h correspond to very high frequencies. 
As is well known, at high frequencies the dielec­
tric constants of a plasma [see (3.5)] has an ap­
proximate value €( w) = 1 - (We /w )2, where we 
-plasma electron frequency, so that these func­
tions can be expressed in the form 

e,.±( +inn 28 I h) = 1 + (w.h I nn28)2 = 1 + 0 ('A.2 I d2) 

(3.14) 

( A.e = h/pe -quantum thermal wavelength of the 
electrons and d -Debye radius). Therefore, neg­
lecting small terms of order A.2/d2, we can set the 
quantities Et_( w) in (3.13) equal to unity. Using 
(3.11) for the sum in (3.13), we obtain 

00 1 1 
~J (xa: +inn) (xp +inn) + (xa:- inn)(xp- inn) J 

1 cth Xa;- cth xa (3.15) =----
Xa;Xa Xa-Xfl 

Then 

_ shxa:shxa ( 1 __ 1_\]. 
Xa:Xa Eh(O) ) 

(3.16) 

In the case of a Maxwellian distribution, we have 1 

for the quantum dielectric constant at zero fre­
quency, in accordance with (3.5) and (3.6), 

where we have introduced the function 
1 

g(z) = e-z' ~ ez'x'dx. 
0 

(3.17) 

(3.18) 

If the ions in a two-species plasma are treated 
in classical manner ( A.i = 0) then 

(0) = 1 + _1_ z + g(kt../2) 
e,. k2d2 z + 1 ' 

(3.19) 

As h- 0 (in this case xa.,f3- 0, A.a.- 0 ), for­
mula (3.16) takes the form 

ea:ep~,.a:fl = _ ea:ea/8 __ ea:ell d2 (3 .20) 
hvT 2n2k2e,.cl (0) - 2n28 1 + k 2d2 ' 

which corresponds to the classical expression 
(1.2). 

When kd » 1, which corresponds to distances 
I r 1 - r 2 I much shorter than d, we can put Ek( 0) 
= 1 and then 

,..a:fl (p p) = _ A.a;p (- k2A.o:11) sh(xa:- xa) (3 21) 
'DI< t, 2 2k2 .exp 4 . • n Xa;- Xp 

This limiting case, under which the polarization of 
the medium is not taken into account, can obviously 
be obtained from an examination of the two -body 
problem, in a manner similar to that used in Sec. 1 
to calculate the probabilities w( r). 

To obtain formula (3.21) it is necessary to con­
sider the off -diagonal elements of the density 
matrix 

n 

= const · exp [- ~:: (R - R')~] 

rel) X~ exp (-: 'ljJk* (r) 'ljJk (r'); 

(3.22) 

Using again the Born approximation (1. 7) for 1/Jk(r) 
and going over then to the Wigner representation 
in accordance with (3.1) for the spatial Fourier 
component of the correlation function t a.f3 [ see 
(3.3)], we obtain an expression that coincides ex­
actly with (3.21). 

In accordance with (3.2), the particle coordinate 
distribution probability is 

w(r)= ~ dptdPda(Pi)fa(P2) [1+ e~:;~ap(r,pt;P2) J 
= 1 + u(r). (3.23) 

Consequently, integrating (3.16) over the momenta 
with weight fa_(p1 ) f(3(P2 ), we obtain the Fourier 
component of the function u(r ): 

uk = \ dptdpd" (Pt) /0 (P2) he"e~ ~k"~ (Pt. P2) J VT 

= -- 2~:~~8 [ g ( k'-;_~) - g ( k~(J.) g ( k~~) ( 1 - 8k ~0))] . 
(3.24) 
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This expression, however, should coincide with 
the Fourier component of the function u <1 > ( r ) 
= w(r) - 1, determined by formula (1.10) [compare 
(1.10) with (3.23)] of Sec. 1: 

+ ecxeil 2 yit r cD (-r ) -1 + ~ exp (- ~) J } 
hvT [ 'Acxll r V;t Acxll 

=- e~~:k"' [ g ( k~cxll)- ( 1-8k'(c:)(0)) J. (3.25) 

Under the conditions when d » i\., the difference 
between (3.24) and (3.25) is insignificant, for when 
ki\. « 1 the functions g ( ki\./2 ) are close to unity, 
and when ki\. > 1, as a result of kd » ki\. ~ 1, we 
can neglect the difference between Ek ( 0) and unity. 

It is obvious that we can replace with equal ac­
curacy the general formula (3.16) for t~/3 (p1, p2 ) 

by the approximate formula 

~ka11 (Pt,P2) = 

_ 'Aall [exp(- k2'Aa112 ) sh(xa- xp) _ ( 1 __ 1_~l 
n2k2 4 Xa- XII \ 81< cl (0)~ ~. 

(3.26) 

Then, returning to the coordinate representation 
for the two-particle distribution function (3.3), we 
get 

F2q (rl-r2, P1o Pz) = /I/2 [ 1 + ~~e: ~ ~ (P!o Pz) eikr elk J 

[ 1 ecxell /d ecxell q ( >] = /I/2 - er e-r + hvT ~cxil r,pl, P2 ' (3.27) 

where 
-... 
~ .. ~q (r, P1• P2) = 

- 'A«Il \ dk eikr [exp (- k2'Aall2 ) sh (xa- xll) -1 J 
n2 J k2 4 Xa - X(l 

= 'Aail [ +.- I~ I I(!)({~ ch p) dp l (3.28) 
P+ 

(3.29) 

where .P ( z ) -error function. 

In the limit as r - 0 the integral with the error 
function can be left out, and the remaining term 
t~8 = 2i\.af3 /r cancels the divergence of the classi­
cal Debye term in (3.27). In the other limiting case, 
when r » i\. and r » v, we obtain by using the 
asymptotic value of the error function 

P_ 

~CD(.!:.:!:_ ch p)dp = P-- P+ + 0 (e-r'11·'l, (3.30) 
A ; 

p+ 

where (p- + P+ )r»v = - 2iv/r, which compensates 
for the first term in the square brackets of (3.28). 

The authors are most grateful to A. A. Vedenov 
and A. I. Larkin for many useful hints and for a 
discussion of the present results. 
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